Вконтакте Facebook Twitter Лента RSS

Фуллерит строение. Фуллерен, его производство, свойства и применение


Фуллерены

Введение

§1 Фуллерены - аллотропная модификация углерода

1.1 История открытия фуллеренов

1.2 Геометрическое строение фуллеренов

1.3 Свойства фуллеренов

1.4 Фуллерены в природе

1.5 Получение фуллеренов

1.6 Применение фуллеренов

§2 Многоугольники и многогранники

2.1 Многоугольники

2.2 Правильный пятиугольник

2.3 Способы построения правильного пятиугольника

2.4 Определение многогранников и виды многогранников

2.5 Тела Платона

2.6 Теорема Эйлера

2.7 Теорема Александрова

2.8 Дуальность

§3 Правило изолированных пентагонов (пятиугольников)

Заключение

Литература

многогранник атом углерод фуллерен

Введение

Можно указать несколько причин выбора данной темы для написания реферата.

Во-первых, на уроках геометрии мы познакомились с многогранниками - абстрактными математическими фигурами. При изучении многогранников нам стало интересно, как подобные объекты проявляются в природе. Во-вторых, на уроках химии, при изучении явления аллотропии углерода, мы кратко познакомились с необычными молекулами - фуллеренами.

Фуллерены - достаточно новое понятие в мире химии. Они очень интересны, свойства фуллеренов очень разнообразны, по строению молекулы фуллеренов - многогранники. Предварительный анализ литературы показал, что материала по свойствам и строению фуллеренов не много, он очень разрознен. Поэтому нам пришлось проанализировать много материала, относящегося и к математической части работы, и к химической части работы.

Цель работы:

Выяснить, как проявляются свойства многогранников на примере молекул фуллеренов.

Задачи:

1) дать определение фуллеренам;

2) кратко описать строение и свойства фуллеренов;

3) дать определение многоугольникам и многогранникам;

4) определить виды многоугольников и многогранников;

5) Рассмотреть какие виды многогранников проявляются на примере молекул фуллеренов

6) Рассмотреть как связана устойчивость фуллеренов с их геометрическим строением.

§1 Фуллерены - аллотропная модификация углерода

В настоящее время понятие "фуллерены" применяется к широкому классу многоатомных молекул углерода Cn , где n = 60. Твердые тела, образованные этими молекулами обычно называют фуллеритами. фуллерен является третьей аллотропной формой углерода (первые две - алмаз и графит). Молекула фуллерена является органической молекулой, а сам фуллерен представляет собой молекулярный кристалл, являющийся связующим звеном между органической и неорганической материей.

1.1 История открытия фуллеренов

В 1973 году русские учёные Д. А. Бочвар и Е. Н. Гальперн опубликовали результаты квантово-химических расчётов, из которых следовало, что должна существовать устойчивая форма углерода, содержащая в молекуле 60 углеродных атомов и не имеющая никаких заместителей. В той же статье была предложена форма такой гипотетической молекулы. Выводы этой работы казались в то время совершенно фантастическими. Никто не мог себе представить, что такая молекула может существовать, и тем более - как взяться за её получение. Эта теоретическая работа несколько опередила своё время и была вначале попросту забыта.

В 1980-х годах астрофизические исследования позволили установить, что в спектрах некоторых звёзд, так называемых «красных гигантах», обнаружены полосы, указывающие на существование чисто углеродных молекул различного размера.

В 1985 году Г. Крото. И Р. Смоли начали проводить исследования уже в «Земных» условиях. Они провели исследования, которые, указывали на существование крупных агрегатов из углеродных атомов - С 60 и С 70 . В итоге была предложена структура многогранника, собранного из пяти- и шестиугольников. Это было точное повторение структуры, предложенной 12 лет назад Бочваром.

Название «фуллерен» было дано в честь известного американского архитектора Бакминстера Фуллера, предложившего строить ажурные куполообразные конструкции сочетанием пяти- и шестиугольников (рис 2 и 3). На первый взгляд кажется, что конструкция собрана из треугольников, однако чередование пяти - и шестилучёвых центров как раз и соответствует строению фуллерена.

1.2 Геометрическое строение фуллеренов

В самом общем виде молекулы фуллеренов представляют собой многогранник, построенный из многоугольников двух видов: шестиугольников (гексагонов) и пятиугольников (пентагонов). Вершины всех многоугольников - атомы углерода. Поверхность многогранника, составленного из многоугольников, подчиняется формуле Эйлера.

Откуда следует, что фуллерен должен содержать 12 пентагонов и произвольное число гексагонов. Действительно, все полученные или смоделированные фуллерены имеют 12 "обязательных" пятиугольников. В зависимости же от количества гексагонов состав сферических молекул может быть различным. Простейший фуллерен теоретически имеет формулу С 20 и состоит только из 12 пентагонов, образующих правильный многогранник - додекаэдр (рис 4). Однако ввиду неустойчивости такой молекулы выделить фуллерен-20 практически не удавалось.

Согласно существующим воззрениям на структуру фуллеренов, устойчивыми могут быть только те из них, в которых 12 "обязательных" пентагонов разделены гексагонами и не имеют между собой общих вершин или ребер. Наиболее исследованный фуллерен С 60 имеет форму усеченного икосаэдра и по внешнему сходству с футбольным мячом чаще называется футболенном (рис. 5). Молекула С 60 имеет 32 грани (12 пентагонов и 20 гексагонов).

Высшие фуллерены (например, С 78 или С 80) допускают различный порядок "выкладывания" поверхности пентагонами и гексагонами при сохранении их общего числа и принципа изоляции пентагонов, т.е. имеют изомеры.

1.3 Свойства фуллеренов

Фуллерены образуют молекулярные кристаллы - фуллериты. Их строение и физико-химические свойства хорошо изучены. Кристаллическая решетка С 60 гранецентрированная кубическая, каждая молекула имеет 12 «соседей», молекулы слабо связаны между собой. Для подобной молекулярной решетки характерны низкие температуры возгонки (800 °С), причем в пар переходят молекулы C 60 . которые прекрасно «живут» в газовой фазе вплоть до температуры 1500 К

Фуллерит С б0 -- твердое вещество горчичного цвета. С 70 - твердое вещество красновато-коричневого цвета.

Фуллериты растворяются в органических растворителях. Наиболее известные растворители можно расположить в следующем порядке уменьшения растворимости фуллеритов: сероуглерод, толуол, бензол, тетрахлорметан, декан, гексан, пентан.

Образцы С 60 чувствительны к воздействию ультрафиолетового излучения в отсутствии кислорода, и могут вступать в реакции разложения. Поэтому их следует хранить в темноте и под вакуумом или в азоте.

Чистый фуллерен при комнатной температуре является изолятором или полупроводником с очень низкой проводимостью.

Фуллериды щелочных металлов, имеющие состав А 3 С 60 , становятся сверхпроводящими при температуре ниже определенного значения

Фуллерены обладают различными магнитными свойствами.

Кристаллические фуллены обладают фотопроводимостью. При облучении видимым светом электрическое сопротивлении кристалла фуллерита уменьшается. Фотопроводимостью обладают не только чистый фуллерит, но и его различные смеси.

Результаты исследований процессов с участием фуллеренов свидетельствует об их аномально высокой стабильности. Причем, стабильность молекул с четными значениями атомов углерода n значительно превышает стабильность молекул с нечетными значениями n . У молекул Сn (n -нечетное) наиболее вероятно отщепление атома углерода, поэтому доля кластеров с нечетными n не превышает 1 %. Как показывают эксперименты, твердый фуллерен С 60 без разложения сублимируется при 400 ° С.

Молекулы фуллеренов обладают высокой электроотрицательностью и способны присоединять к себе до шести свободных электронов. Это делает их сильными окислителями, способными образовывать множество новых химических соединений с новыми интересными свойствами. Данное свойство фуллеренов обнаружилось уже в одном из первых экспериментов по их химическому превращению, где была осуществлена гидрогенизация С 60 . Продуктом этой реакции стала молекула С 60 Н 36 .

Фуллерены обладают высокой химической инертностью к процессу разложения на простые вещества: молекула С 60 сохраняет стабильность в инертной атмосфере до 1700 К. Однако в присутствии кислорода окисление наблюдается при значительно более низких температурах (около 500 К). При этом образуется аморфная структура, в которой на одну молекулу С 60 приходится 12 атомов кислорода. Повышение температуры сопровождается потерей формы молекулы С 60 .

1.4 Фуллерены в природе

Открытие фуллеренов обусловило и поиск фуллереновых структур в углеродсодержащих породах.

Фуллерены были найдены в природе. Сделали подобное поразительное открытие геохимики. Они обнаружили присутствие фуллерена в образцах, собранных в осадочных отложениях кратера Садбури, образовавшегося в результате метеоритного удара 1,85 млрд. лет назад. В параллельных и независимых исследованиях фуллерены были обнаружены также в образцах из участков границы мелового и третичного периодов в Новой Зеландии. Нахождение фуллеренов в отложениях объясняют тем, что примерно 65 млн. лет назад в результате удара гигантского метеорита на Земле возник мощный пожар, что способствовало образованию подобных структур.

Известно, что шунгитовая порода сформировалась около 2 млрд. лет тому назад и содержит некристаллический углерод, микроэлементы, минеральную составляющую, небольшое количество органики и воду. Содержание углерода, определяющего основные свойства шунгитовых пород, колеблется от 1 до 70 %., но на отдельных участках может достигать 98 % . Электронно-микроскопическими исследованиями было установлено, что для всех образцов характерен один основной структурный элемент - углеродные глобулы размером 10 нм, внутри которых было установлено наличие пустот. Также была установлена схожесть искажения графитоподобных слоев шунгитового углерода (ШУ) и фуллеренов. Основываясь на этих данных, авторы предложили фуллереноподобную структуру ШУ. Проведенные опыты показали присутствие фуллеренов С 60 и С 70 в количестве 0.0001 %. На основании этого была предложена фуллеренная модель шунгитового углерода.

1.5 Получение фуллеренов

Структура фуллерена близка к структуре графита, поэтому наиболее эффективный способ их получения основан на термическом испарении графита либо в результате омического нагрева графитового электрода, либо лазерного облучения. При умеренном нагреве графита происходит разрушение связей между отдельными слоями и из фрагментов, включающих шестиугольные конфигурации происходит сборка фуллеренов. Полученный угольный конденсат наряду с кластерами С-60 и С-70 содержит большое количество более мелких молекул, значительная часть которых переходит в С 60 и С 70 при выдержке в течение нескольких часов при 500-600° С, либо при более низкой температуре в неполярном растворителе.

Кроме перечисленных способов получения фуллеренов, являющихся термическими процессами разложения углеродсодержащих веществ, разработан каталитический метод синтеза фуллеренов из каменноугольной смолы. Отличительной чертой данного метода является низкая температура процесса, составляющая 200-400° С. Это на порядок ниже температуры термического разложения графита (3300° С)

1.6 Применение фуллеренов

Возникает перспектива использования фуллеренов в качестве основы для создания запоминающей среды со сверхвысокой плотностью информации. Если в качестве носителей информации использовать фуллереновые магнитные диски, расположенные на поверхности жёсткого диска на расстоянии 5 нм. Друг от друга, то плотность записи достигает значения- 4*10 12 бит/см. 2 . Есть предложение использовать фуллерен в качестве основы для производства аккумуляторных батарей. Обсуждаются вопросы применения их в создании фотоприёмников и оптоэлектронных устройств, лекарственных препаратов, сверхпроводящих материалов. Известен метод получения алмазов из поликристаллического фуллерита.

§2 Многоугольники и многогранники

2.1 Многоугольники

Многоугольник - геометрическая фигура на плоскости, ограниченная замкнутой ломаной линией; линия, которая получается, если взять n любых точек А 1 , А 2 , ..., А n и соединить прямолинейными отрезками каждую из них с последующей, а последнюю с первой.

Многоугольники бывают двух типов: выпуклые и невыпуклые . Мы подробнее рассмотрим выпуклые многоугольники. Многоугольник называют выпуклым , если никакая сторона многоугольника, будучи неограниченно продолженной, не разрезает многоугольник на две части. Выпуклые многоугольники бывают правильными и неправильными, но мы рассмотрим правильные. Выпуклый многоугольник называется правильным , если у него все стороны равны и все углы равны. Центром правильного многоугольника называется точка, равноудаленная от всех его вершин и всех его сторон.

Центральным углом правильного многоугольника называется угол, под которым видна сторона из его центра. Свойства правильного многоугольника:

1) Правильный многоугольник является вписанным в окружность и описанным около окружности, при этом центры этих окружностей совпадают;

2) Центр правильного многоугольника совпадает с центрами вписанной и описанной окружностей;

3) Сторона правильного n -угольника связана с радиусом R описанной окружности формулой;

4) Периметры правильных n -угольников относятся как радиусы описанных окружностей.

5) Диагонали правильного n-угольника делят его углы на равные части.

2.2 Правильный пятиугольник

Подробнее остановимся на правильном пятиугольнике - пентагоне.

Основные соотношения: угол при вершине пятиугольника равен 108°, внешний угол - 72°. Сторона пятиугольника выражается через радиусы вписанной и описанной окружности:

Построим правильный пятиугольник. Это легко сделать с помощью описанной окружности. Из ее центра надо последовательно отложить углы с вершиной в центре окружности, равные 72°. Стороны углов пересекут окружность в пяти точках, соединив их последовательно, получим правильный пятиугольник. А теперь проведем в этом пятиугольники все диагонали. Они образуют правильный звездчатый пятиугольник, т.е. знаменитую пентаграмму. Интересно, что стороны пентаграмм, пересекаясь, образуют снова правильный пятиугольник, в котором пересечение диагоналей дает нам новую пентаграмму и так далее до бесконечности (см. рис. 6).

Пентаграмма - правильный невыпуклый пятиугольник, она же правильный звездчатый пятиугольник, или правильная пятиугольная звезда. Форму пятиконечной звезды имеют многие цветы, морские звезды и ежи, вирусы и т.д. Первые упоминания о пентаграмме относятся к Древней Греции. В переводе с греческого пентаграмма означает дословно пять линий. Пентаграмма была отличительным знаком школы Пифагора (580-500 гг. до н.э.). Они считали, что этот красивый многоугольник обладает многими мистическими свойствами. Благоговейное отношение к пентаграмме было характерно и для средневековых мистиков, которые многое заимствовали у пифагорейцев. В средние века считалось, что пентаграмма служит охранным знаком от сатаны.

2.3 Способы построения правильного пятиугольника

Приближенное построение правильного пятиугольника представляет собой интерес. А.Дюрером оно проводится при условии неизменности раствора циркуля, что повышает точность построения (рис. 7).

Способ построения описан Дюрером так: "Однако пятиугольник, построенный неизменным раствором циркуля, делай так. Проведи две окружности так, чтобы каждая из них проходила через центр другой. Два центра А и В соедини прямой линией. Это и будет стороной пятиугольника. Точки пересечения окружностей обозначь сверху С, снизу D и проведи прямую линию CD. После этого возьми циркуль с неизменным раствором и, установив одну его ножку в точку D, другой проведи через оба центра А и В дугу до пересечения её с обеими окружностями. Точки пересечения обозначь через E и F, а точку пересечения с прямой CD обозначь буквой G. Теперь проведи прямую линию через Е и G до пересечения с линией окружности. Эту точку обозначь Н. Затем проведи другую линию через F и G до пересечения с линией окружности и поставь здесь J. Соединив J,A и H,B прямыми, получим три стороны пятиугольника. Дав возможность двум сторонам такой длины достигнуть совпадения в точке K из точек J и H, получим некоторый пятиугольник".

Пусть w- данная окружность радиуса R c центром О. Построим сначала правильный десятиугольник, вписанный в окружность w. Для этого проведем взаимно перпендикулярные радиусы ОА1 и ОВ окружности w и на отрезке ОВ как на диаметре построим окружность с центром С. Отрезок А1С пересекает эту окружность в некоторой точке D. Далее отметим на окружности w точки А2, А3, … , А10 так, что А1А2= А2А3=….

А9А10 = А1D. Десятиугольник А1А2…А10-искомый. Для того, чтобы построить правильный пятиугольник нужно соединить точки данного десятиугольника через одну, значит соединим точки А1,А3,А5,А7,А9. Пятиугольник А1А3А5А7А9- искомый.

Стороны пентаграммы, пересекаясь, делят друг друга на отрезки, длины которых образуют золотую пропорцию.

2.4 Определение многогранников и виды многогранников

Как указывалось ранее, молекулы фуллеренов представляют собой многогранники. Рассмотрим подробнее это понятие.

Какие фигуры называются правильными многогранниками? В курсе геометрии даётся определение: «Многогранник- это геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями. Стороны граней называются ребрами многогранника, а концы ребер- вершинами многогранника»

Названия правильных многогранников пришли из Древней Греции. В дословном переводе с греческого они означают: четырёхгранник, шестигранник, восьмигранник, двенадцатигранник и двадцатигранник (рис. 10).

2.5 Тела Платона

Правильные многогранники часто называют Платоновыми телами, поскольку он первым упомянул их в своих научных трактатах, хотя они были известны задолго до него.

Платон (рис. 11) считал, что мир строится из четырёх «стихий»- огня, земли, воздуха и воды, а вид этих «стихий» имеет форму четырёх правильных многогранников. Итак, тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр- как самый обтекаемый- воду; куб- самая устойчивая из фигур- землю, октаэдр- как самый «воздушный» по конструкции- воздух. Пятый многогранник- додекаэдр- воплощал в себе «всё сущее», символизировал весь мир и небо и почитался главнейшим.

Правильный многогранник - это многогранник, у которого все грани - равные правильные многоугольники и в каждой вершине сходятся одно и то же число рёбер.

Я начну своё рассмотрение с правильных многогранников, гранями которых являются равносторонние треугольники. Первый из них - это тетраэдр. В тетраэдре три равносторонних треугольника встречаются в одной вершине; при этом их основания образуют новый равносторонний треугольник.

Тетраэдр имеет наименьшее число граней среди Платоновых тел и является трехмерным аналогом плоского правильного треугольника, который имеет наименьшее число сторон среди правильных многоугольников.

Следующее тело, которое образуется равносторонними треугольниками, называется октаэдром. В октаэдре в одной вершине встречаются четыре треугольника; в результате получается пирамида с четырехугольным основанием. Если соединить две такие пирамиды основаниями, то получится симметричное тело с восемью треугольными гранями - октаэдр.

Теперь можно попробовать соединить в одной точке пять равносторонних треугольников. В результате получится фигура с 20 треугольными гранями - икосаэдр. Следующая правильная форма многоугольника - квадрат. Если соединить три квадрата в одной точке и затем добавить еще три, мы получим совершенную форму с шестью гранями, называемую кубом. Наконец, существует еще одна возможность построения правильного многогранника, основанная на использовании следующего правильного многоугольника - пентагона. Если собрать 12 пентагонов таким образом, чтобы в каждой точке встречалось три пентагона, то получим еще одно Платоново тело, называемое додекаэдром.

Следующим правильным многоугольником является шестиугольник. Однако если соединить три шестиугольника в одной точке, то мы получим поверхность, то есть из шестиугольников нельзя построить объемную фигуру. Любые другие правильные многоугольники выше шестиугольника не могут образовывать тел вообще. Из этих рассуждений вытекает, что существует только пять правильных многогранников, гранями которых могут быть только равносторонние треугольники, квадраты и пентагоны.

Рассмотрим две теоремы из общей теории выпуклых многогранников, рассматриваемых как поверхности.

2.6 Теорема Эйлера

В таблице 1 представлено соотношение чисел граней, вершин и ребер для правильных многогранников.

Таблица № 1.

Рассматривая таблицу № 1, зададимся вопросом: «Нет ли закономерности в возрастании чисел в каждом столбце?» По-видимому, нет. В столбце «грани» сначала закономерность прослеживается (4+2=6, 6+2=8), а потом закономерность пропадает (8+2?12, 12+2?20). В столбце «вершины» нет даже стабильного возрастания. Число вершин то возрастает (от 4 до 8, от 6 до 20), а то убывает (от 8 до 6, от 20 до 12). В столбце «рёбра» закономерности даже не видно. Но не будем сдаваться. Ведь мы сравнивали числа внутри одного столбца. Но можно рассмотреть сумму чисел в двух столбцах, хотя бы в столбцах «грани» и «вершины» (Г и В). Тогда составим новую таблицу подсчётов.

Таблица № 2.

Вот теперь закономерность видна невооружённым взглядом. Сформулируем её так: «Сумма числа граней и вершин равна числу рёбер, увеличенному на два» Итак, мы доказали теорему Эйлера (1752).(число вершин минус число рёбер плюс число граней выпуклого многогранника -- равно двум). Как уже говорилось выше, простейший фуллерен С 20 представляет собой додекаэдр, то есть для него выполняется теорема Эйлера. Молекула самого устойчивого фуллерена С 60 имеет 60 вершин, 32 грани и 90 ребер, то есть 60 - 90 + 32 = 2, то есть теорема Эйлера также выполняется.

2.7 Теорема Александрова

Следующая теорема - это теорема Александрова (1939): Эта теорема есть теорема существования, то есть она показывает, с какими развёртками существуют выпуклые многогранники. Для этого чтобы развёртку превратить в поверхность выпуклого многогранника, необходимо, чтобы: а) удовлетворялось условие Эйлера и б) чтобы сумма плоских углов, сходящихся при склеивании в одной вершине, для любой вершины была меньше 360°.

На рисунке 12 приведены плоскостные развертки трех самых известных фуллерено: С 60 , С 70 и С 84 (напоминающий мяч для бейсбола, для наглядности на рисунке проведен шив мяча). При склеивании трехмерной модели развертка сначала увеличивается так, чтобы длина ребер многогранников составляла 2-3 см. Затем развертку вырезают по периметру. Шестиугольники с цифрой «5» вырезают со стороны вершины, помеченной точкой, и удаляют. Шестиугольники с буквой «Т» - язычки для склеивания. По мере склеивания модели на месте шестиугольников с цифрой «5» и образуются пятиугольники (вырезанные).

Если рассмотреть развертку молекул фуллеренов (рисунок 8), то видно, что в вершине соответствующей фигуры сходятся 2 шестиугольника и пятиугольник (тогда сумма плоских углов соответственно равна 120 0 +120 0 +72 0 =312 0 <360 0). То есть выполняется второе условие теоремы Александрова.

2.8 Дуальность

Существуют удивительные геометрические связи между всеми правильными многогранниками. Так, например, куб и октаэдр дуальны, то есть получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны икосаэдр и додекаэдр.

Тетраэдр дуален сам себе. Додекаэдр получается из куба построением «крыш» на его гранях, вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру, то есть из куба могут быть получены все остальные правильные многогранники. Следует отметить, что у пары дуальных многогранников число вершин одного равно числу граней другого, а рёбер у них поровну. Дуальные многогранники представлены на рисунке 13.

§3 Правило изолированных пентагонов (пятиугольников)

С точки зрения стабильности фуллерены могут быть разбиты на два типа: устойчивые и неустойчивые.

Грань между ними позволяет провести правило изолированных пентагонов (Izolated Pentagon Rule, IPR). Это правило гласит, что наиболее стабильными являются те фуллерены, в которых пентагоны не касаются друг друга, то есть каждый пентагон окружен пятью гексагонами и имеет общие ребра только с гексагонами. Бакминстерфуллерен является первым представителем фуллеренов, удовлетворяющим правилу изолированных пентагонов, С 70 - вторым представителем.

В молекуле С 60 , которая является наиболее симметричным представителем семейства фуллеренов, число шестиугольников равно 20. При этом каждый пятиугольник граничит только с шестиугольниками, а каждый шестиугольник имеет три общие стороны с шестиугольниками и три - с пятиугольниками.

В фуллеренах с n > 70 всегда есть изомер, подчиняющийся IPR-правилу, и число таких изомеров быстро возрастает. Найдено 5 для С 78 , 24 для С 84 и 40 для С 90 . Все остальные фуллерены с n от 22 до 68 имеют в своей структуре прилегающие друг к другу пентагоны и менее стабильны. Но несмотря на это правило удалось получить пленку черного цвета толщиной около 100 нм, состоящую в основном из молекул C 36 . Каждая молекула образована из 12 пятиугольных и двух шестиугольных углеродных колец и имеет ось симметрии шестого порядка.

По мере развития исследований фуллеренов были синтезированы и изучены молекулы фуллеренов, содержащие различное число атомов углерода - от 36 до 540. Однако до сих пор оставался нерешенным вопрос о возможности существования и способе получения минимально возможной молекулы фуллерена - С 20 . Поверхность такой молекулы должна состоять из одних пятиугольников и вовсе не содержать шестиугольников. Такая структура характеризуется существенно более острыми углами, чем у крупных молекул фуллеренов и не подчиняется правилу изолированных пентагонов, поэтому были основания сомневаться в химической стабильности, а стало быть и в возможности получения молекулы С 20 . В то же время без С 20 семейство фуллеренов выглядело неполным.

Заключение

В работе мы рассмотрели понятие фуллеренов - фуллерены - сравнительно недавно открытую аллотропную модификацию углерода. В отличие от других аллотропных модификаций углерода фуллерены имеют молекулярную структуру, а молекулы представляют собой полуправильные многогранники. Фуллерены представляют собой проявление изучаемых в математике абстрактных фигур - многогранников и многоугольников - в природе. Фуллерены - вещества, имеющие большие перспективы в использовании для различных целей, поэтому их исследование и изучение их геометрической структура очень важно.

Рассматривая строение молекул фуллеренов сделали вывод, что они подчиняются теоремам, сформулированным для выпуклых многогранников: теореме Эйлера и теореме Александрова.

Литература

1.Золотухин И. В., Фуллерит - новая форма углерода, Сорсовский Образовательный Журнал, №2, 1996, с. 51-56.

2.Сидоров Л. Н., Газовые кластеры и фуллерены, Сорсовский Образовательный Журнал, №3, 1998, с. 65-71.

3.Химия в школе, №1, 2001, ИССЛЕДОВАНИЯ, ОТКРЫТИЯ, ПРОГНОЗЫ: Фуллерен С36

4.Белов Д. В., Новые полиморфные МОДИФИКАЦИИ УГЛЕРОДА, Химия в школе, №2, 2003.

5.Семенов Е. Е. За страницами учебника геометрии, М, Просвещение, 1999.

6.Рывкин А., А, Рывкин А. З., Справочник по математике, М, Высшая школа, 1987

7.Атанасян Л. С., Геометрия 7-9, М. , Ппросвещение, 2005.

8.Шарыгин И. Ф., Геометрия 7-9, М., Дрофа, 2002.

Подобные документы

    Структура углеродных наноструктур. История открытия, геометрическое строение и способы получения фуллеренов. Их физические, химические, сорбционные, оптические, механические и трибологические свойства. Перспективы практического использования фуллеренов.

    курсовая работа , добавлен 13.11.2011

    Структурные особенности графена - однослойной двумерной углеродной структуры, его дефекты и свойства. Потенциальные области применения графена. Строение и получение фуллеренов. Классификация углеродных нанотрубок по количеству слоев, их применение.

    курсовая работа , добавлен 03.03.2015

    Фуллерены – новые аллотропные формы углерода: структура кристаллической решетки, электронное строение и химические свойства. Исследования фуллеренов, перспективы их применения в биологии, медицине. Методы получения водорастворимой формы - фуллеренолов.

    реферат , добавлен 09.12.2012

    Структура и свойства краун-эфиров и фуллеренов, их получение и применение. Схема установки для получения монослоев, приготовление растворов и построение р-А изотерм. Молекулярное моделирование и определение площади, занимаемой молекулой в плавающем слое.

    дипломная работа , добавлен 01.04.2011

    Фуллерен как молекулярное соединение, принадлежащее классу аллотропных форм углерода, способы получения. Знакомство с разнообразием физико-химических и структурных свойств соединений на основе фуллеренов. Анализ сфер применения фуллереносодержащих смесей.

    реферат , добавлен 18.10.2013

    Фуллерит как кристалл из больших молекул углерода Сn-фуллеренов. Знакомство с основными особенностями нанокристаллических материалов, анализ преимуществ: высокая вязкость, повышенная износостойкость. Характеристика механических свойств наноматериалов.

    реферат , добавлен 20.05.2014

    Закономерности влияния постоянного электрического поля на выход полициклических ароматических углеводородов, сажи, фуллеренов в бензол-кислородном пламени в зависимости от изменения межэлектродного расстояния, типа электродной системы, напряженности поля.

    диссертация , добавлен 16.06.2013

    Основные понятия нанотехнологии и развитие нанохимии. Роль углерода в наномире. Открытие фуллеренов как формы существования углерода. Виды умных наноматериалов: биомиметические, биодеградируемые, ферромагнитная жидкость, программно-аппаратный комплекс.

    презентация , добавлен 12.08.2015

    Место углерода в таблице химических элементов: строение атомов, энергетические уровни, степень окисления. Химические свойства углерода. Алмаз, графит, фуллерен. Адсорбция как важное свойство углерода. Изобретение противогаза и угольных фильтров.

    презентация , добавлен 17.03.2011

    Многообразие соединений углерода, их распространение в природе и применение. Аллотропные модификации. Физические свойства и строение атома свободного углерода. Химические свойства углерода. Карбонаты и гидрокарбонаты. Структура алмаза и графита.

Молекулярная форма углерода или аллотропная его модификация, фуллерен, - это длинный ряд атомных кластеров C n (n > 20), которые представляют собой выпуклые замкнутые многогранники, построенные из атомов углерода и имеющие пятиугольные или шестиугольные грани (здесь есть очень редкие исключения). Атомам углерода в незамещённых фуллеренах свойственно находиться в sp 2 -гибридном состоянии с координационным числом 3. Таким образом формируется сферическая сопряжённая ненасыщенная система согласно теории валентных связей.

Общее описание

Самая термодинамически устойчивая при нормальных условиях форма углерода - графит, который выглядит как стопка едва связанных друг с другом графеновых листов: плоские решётки, состоящие из шестиугольных ячеек, где на вершинах - атомы углерода. Каждый из них связан с тремя соседними атомами, а четвёртый валентный электрон образует пи-систему. Значит, фуллерен - это именно такая молекулярная форма, то есть картина sp 2 -гибридного состояния очевидна. Если ввести в графеновый лист геометрические дефекты, неизбежно образуется замкнутая структура. Например, такими дефектами служат пятичленные циклы (пятиугольные грани), точно так же распространённые наряду с шестиугольными в химии углерода.

Природа и технологии

Получение фуллеренов в чистом виде возможно путём искусственного синтеза. Эти соединения продолжают интенсивно изучать в разных странах, устанавливая условия, при которых происходит их образование, а также рассматривается структура фуллеренов и их свойства. Всё более ширится сфера их применения. Оказалось, что значительное количество фуллеренов содержится в саже, которая образуется на графитовых электродах в дуговом разряде. Ранее этого факта просто никто не видел.

Когда фуллерены были получены в условиях лаборатории, молекулы углерода начали обнаруживаться и в природе. В Карелии нашли их в образцах шунгитов, в Индии и США - в фурульгитах. Также много и часто встречаются молекулы углерода в метеоритах и отложениях на дне, которым не менее шестидесяти пяти миллионов лет. На Земле чистые фуллерены могут образовываться при разряде молнии и при сгорании природного газа. взятые над Средиземным морем, были изучены в 2011 году, и оказалось, что во всех взятых образцах - от Стамбула до Барселоны - присутствует фуллерен. Физические свойства этого вещества обуславливают самопроизвольное образование. Также огромные его количества обнаружены в космосе - и в газообразном состоянии, и в твёрдом виде.

Синтез

Первые опыты выделения фуллеренов происходили через конденсированные пары графита, которые получали при лазерном воздействии облучением твердых графитовых образцов. Удавалось получить только следы фуллеренов. Лишь в 1990 году химиками Хаффманом, Лэмбом и Кретчмером был разработан новый метод добычи фуллеренов в граммовых количествах. Он заключался в сжигании графитовых электродов электрической дугой в атмосфере гелия и при низком давлении. Происходила эрозия анода, и на стенках камеры появлялась сажа, содержащая фуллерены.

Далее сажу растворяли в толуоле или бензоле, а в полученном растворе выделялись граммы в чистом виде молекул С 70 и С 60 . Соотношение - 1:3. Кроме того, раствор содержал и два процента тяжёлых фуллеренов высшего порядка. Теперь дело было за малым: подбирать оптимальные параметры для испарения - состав атмосферы, давление, диаметр электродов, ток и так далее, чтобы достигнуть наибольшего выхода фуллеренов. Они составляли примерно до двенадцати процентов собственно материала анода. Именно поэтому и столь дорого фуллерены стоят.

Производство

Все попытки учёных экспериментаторов на первых порах были тщетными: производительные и дешёвые способы получения фуллеренов не находились. Ни сжигание в пламени углеводородов, ни химический синтез к успеху не привели. Метод электрической дуги оставался самым продуктивным, позволявшим получать около одного грамма фуллеренов в час. Фирма Mitsubishi наладила промышленное производство методом сжигания углеводородов, но их фуллерены не чисты - они содержат молекулы кислорода. И до сих пор остаётся неясным сам механизм образования данного вещества, потому что процессы горения дуги крайне неустойчивы с термодинамической точки зрения, и это очень сильно тормозит рассмотрение теории. Неопровержимы только факты о том, что фуллерен собирает отдельные атомы углерода, то есть фрагменты С 2 . Однако наглядная картина образования этого вещества так и не сформировалась.

Высокая стоимость фуллеренов определяется не только низким выходом при сжигании. Выделение, очистка, разделение фуллеренов разной массы из сажи - все эти процессы достаточно сложны. Особенно это касается разделения смеси на отдельные молекулярные фракции, которые проводятся посредством жидкостной хроматографии на колонках и с высоким давлением. На последнем этапе удаляются остатки растворителя из уже твёрдого фуллерена. Для этого образец выдерживается в условиях динамического вакуума при температуре до двухсот пятидесяти градусов. Но плюс в том, что во времена разработки фуллерена С 60 и получения его в уже макроколичествах органическая химия приросла самостоятельной ветвью - химией фуллеренов, которая стала невероятно популярной.

Польза

Производные фуллеренов применяются в различных областях техники. Плёнки и кристаллы фуллерена - полупроводники, обладающие при оптическом облучении фотопроводимостью. Кристаллы С 60 , если их легировать атомами щёлочных металлов, переходят в состояние сверхпроводимости. Растворы фуллерена имеют нелинейные оптические свойства, потому могут использоваться как основа оптических затворов, которые необходимы для защиты от интенсивного излучения. Также фуллерен используют в качестве катализатора для синтеза алмазов. Широко применяются фуллерены в биологии и медицине. Здесь работает три свойства данных молекул: определяющая мембранотропность липофильность, электронодефицит, дающий способность взаимодействия со свободными радикалами, а также способность передавать молекуле обычного кислорода их собственное возбуждённое состояние и превращать этот кислород в синглетный.

Подобные активные формы вещества атакуют биомолекулы: нуклеиновые кислоты, белки, липиды. Активные формы кислорода используют в фотодинамической терапии для лечения рака. В кровь пациента вводят фотосенсибилизаторы, генерирующие активные формы кислорода - собственно фуллерены или их производные. Кровоток в опухоли слабее, чем в здоровых тканях, а потому фотосенсибилизаторы накапливаются в ней, и после направленного облучения молекулы возбуждаются, генерируя активные формы кислорода. раковые клетки испытывают апоптоз, и опухоль разрушается. Плюс к этому - фуллерены имеют антиоксидантные свойства и улавливают активные формы кислорода.

Фуллерен понижает активность ВИЧ-интегразы, белка, который отвечает за встраивание вируса в ДНК, взаимодействуя с ним, изменяя конформацию и лишая его основной вредительской функции. Некоторые из производных фуллерена взаимодействуют непосредственно с ДНК и препятствуют действию рестиктаз.

Ещё о медицине

В 2007 году начали использоваться водорастворимые фуллерены для употребления их в качестве противоаллергических средств. Исследования проводились на человеческих клетках и крови, которые подвергались воздействию производных фуллерена - С60(NEt)x и С60(ОН)x. В экспериментах на живых организмах - мышах - результаты были положительными.

Уже сейчас это вещество используется как вектор доставки лекарства, поскольку вода с фуллеренами (вспомним гидрофобность С 60) проникает в мембрану клетки очень легко. Например, эритропоэтин - введённый непосредственно в кровь, в значительном количестве деградируется, а если использовать его вместе с фуллеренами, то концентрация возрастает более чем вдвое, и потому он попадает внутрь клетки.

Фуллерен - это молекула, представляющая собой замкнутую сферу, состоящую из шестидесяти атомов углерода. В 2010 году в связи с 25-летием открытия фуллерена был опубликован этот дудл поисковой системы Google . Сейчас первому сообщению о синтезе С60 исполнилось уже более 30 лет, а Нобелевской премии, венчающей историю ее открытия, - чуть менее 20 лет, при этом сами исследования фуллерена все еще продолжаются. Чем так заинтересовала эта молекула исследователей всего мира? Почему многие люди, не слишком сведущие в науке, хотя бы что-то слышали о ней?

Начнем с введения в историю С60. Часто замечательному открытию предшествуют события, на первый взгляд не имеющие с ним прямую связь, однако, если приглядеться, в них обязательно сочетаются встреча нескольких умных людей, интересная идея и свежие экспериментальные результаты, позволяющие по-новому взглянуть на интересующую проблему.

Началось все с того, что в середине 1970-х Гарольд Крото обнаружил по спектральным данным из космоса длинные углеродные молекулярные цепочки, и у него появилось желание получить их в лабораторных условиях. В начале 1980-х за океаном, в Университете Райса (Техас, США), в лаборатории Ричарда Смолли, была разработана аппаратура для исследования соединений и кластеров, образующихся из тугоплавких элементов.

Осталось соединить эти два события воедино. Это было сделано третьим членом нобелевской команды Робертом Керлом, который, будучи гостем в лаборатории Крото в Университете Сассекса, предложил ему посетить лабораторию Смолли, что и было сделано в 1984 году. Крото был впечатлен возможностью установки и предложил заменить металлический диск на графитовый, чтобы получить не металлические кластеры, а углеродные цепочки, смоделировав условия как в оболочках звезд.

В августе 1985 года Крото приехал к Смолли, чтобы участвовать в таком эксперименте. Так начался его исторический 10-дневный визит. Эти 10 дней сентября привели к тому, что сначала были получены непонятные пики в масс-спектре для структур из 60 и 70 атомов углерода, а затем они были интерпретированы как замкнутые структуры, имеющие форму футбольного мяча и мяча для регби. А 13 сентября редакция журнала Nature получила статью с заголовком «С60: Buckminsterfullerene». Молекула фуллерена в этой статье изображена с помощью футбольного мяча, - видимо, у авторов просто не было времени на постройку понятной атомарной модели.


Почему авторы предположили, что полученная молекула С60 представляет собой именно замкнутую сферу, а не цепочку? Это связано в том числе с тем, что природа «любит» симметричные структуры, а усеченный икосаэдр (форма футбольного мяча) имеет высшую симметрию. Крото писал: «Помню, я думал о том, что такая форма молекулы настолько прекрасна, что должна быть верной». На мысль о такой форме Крото подтолкнул купол, построенный выдающимся изобретателем и философом Бакминстером Фуллером, умершим в 1983 году, чьим именем и была названа новая молекула.


Следует отметить, что теоретически фуллерены были предсказаны задолго до экспериментального получения. В 1966 году Дэвидом Джонсом было предположено, что внедрение в графитовый слой, состоящий из правильных шестиугольников, пятиугольных дефектов может превратить этот плоский слой в полую замкнутую структуру. В 1971 году в Японии физиком Осавой обсуждалась возможность существования такой структуры (Рис. 3). Но он опубликовал этот результат в японском журнале Kagaku («Химия»), который выходит только на японском языке. Затем через год им была написана книга об ароматичности, но опять же на японском языке, в которую была включена глава о фуллерене. Именно из-за языкового барьера его работа не была известна научному сообществу вплоть до экспериментального открытия С60.

Отметим, что в СССР в 1971 году впервые был проведен квантово-химический расчет стабильности и электронной структуры фуллерена. Это произошло следующим образом. Директором Института элементоорганических соединений РАН (ИНЭОС РАН) в то время был академик АН СССР А. Н. Несмеянов, он предложил заведующему лабораторией квантовой химии Д. А. Бочвару исследовать полые углеродные замкнутые структуры, в которые могут быть помещены атомы металлов, и тем самым изолировать их от воздействия окружающей среды.

Вместе со своими сотрудниками Е. Г. Гальперн и И. В. Станкевичем Д. А. Бочвар приступил к этой работе. Она началась с исследования стабильности молекулы C20, имеющей форму додекаэдра, потому была названа карбододекаэдром. Однако размер такой молекулы мал, что изначально ограничивает возможность внедрения в нее атомов металла. И главное, результаты расчета показали, что такая структура должна быть нестабильной. Работа остановилась. И. В. Станкевич, будучи заядлым футболистом, предложил другую возможную замкнутую структуру из углерода С60, имеющую симметрию усеченного икосаэдра - футбольного мяча. Он принес в лабораторию футбольный мяч и сказал Гальперн: «Лена, 22 здоровых мужика часами пинают этот мяч, и с ним ничего не делается. Молекула такой формы должна быть очень крепкой».


Квантово-химический расчет молекулы такого размера был очень сложен для компьютеров того времени, однако он был проведен и показал, что С60 является стабильной молекулой. Сначала Бочвару, Гальперн и Станкевичу не удалось убедить химиков о возможности существования такой молекулы, и только появление в 1972 году краткой заметки американских ученых о возможной молекуле-додекаэдре С20, с которой авторы пошли к А. Н. Несмеянову, подвигло его представить работу о С60 в Доклады АН СССР. К большому сожалению, Бочвару, Гальперн и Станкевичу не удалось убедить химиков-экспериментаторов синтезировать эту структуру, и вплоть до синтеза в 1985 году эта структура считалась теоретической выдумкой. Нобелевские лауреаты отметили их вклад в исследовании С60. В нобелевской лекции Смолли было отмечено, что этой премии были достойны Осава, Джонс, Гальперн, Станкевич, каждый из которых внес свою часть в открытие.

Завершить историю открытия фуллерена можно словами Крото из его нобелевской лекции: «История открытия С60 не может быть правильно оценена без учета красоты формы этой молекулы, которая обусловлена ее невероятной симметрией. Другой важный факт, создающий ауру вокруг этой молекулы, связан с ее названием - бакминстерфуллерен. Все это придает нашей элегантной молекуле харизму, которая очаровала ученых, привела в восторг обывателей, добавила энтузиазма молодым в их отношении к науке и, в частности, придала свежее дыхание химии».

Свойства фуллерена и фуллерита

Чистый фуллерен при комнатной температуре является изолятором с величиной запрещенной зоны около 2 эВ или собственным полупроводником с очень низкой проводимостью. Известно, что в твердых телах электроны могут иметь энергию только в определенных интервалах ее значений - в зонах разрешенных энергий, которые образуются из атомных или молекулярных энергетических уровней. Эти зоны разделены зонами запрещенных значений энергий, которые электроны не могут иметь.

Нижняя зона, как правило, заполняется электронами, участвующими в образовании химической связи между атомами или молекулами, поэтому часто называется валентной зоной. Выше ее лежит запрещенная зона, затем следует пустая или не полностью заполненная зона разрешенных энергий, или зона проводимости. Она получила название оттого, что в ней всегда существуют свободные электронные состояния, благодаря которым электроны могут перемещаться (дрейфовать) в электрическом поле, таким образом осуществляя перенос заряда или, иначе говоря, обеспечивая протекание электрического тока (проводимость твердого тела).

Кристаллы из фуллеренов (фуллериты) представляют собой полупроводники с шириной запрещенной зоны 1,2–1,9 эВ и обладают фотопроводимостью. При облучении видимым светом электрическое сопротивление кристалла фуллерита уменьшается. Фотопроводимостью обладает не только чистый фуллерит, но и его различные смеси с другими веществами. Было обнаружено, что добавление атомов калия в пленки С60 приводит к появлению сверхпроводимости при 19 К.

Присоединяя к себе радикалы различной химической природы, фуллерены способны образовывать широкий класс химических соединений, обладающих различными физико-химическими свойствами. Так, получены пленки полифуллерена, в которых молекулы С60 связаны между собой не вандерваальсовским, как в кристалле фуллерита, а химическим взаимодействием. Эти пленки, обладающие пластическими свойствами, являются новым типом полимерного материала. Интересные результаты достигнуты в направлении синтеза полимеров на основе фуллеренов. При этом фуллерен С60 служит основой полимерной цепи, а связь между молекулами осуществляется с помощью бензольных колец. Такая структура получила образное название «нить жемчуга».

Полимеризация фуллерена приводит к появлению необычных эффектов, перспективных для современной технологии. Комбинация фуллеренов с другими углеродными наноструктурами приводит к получению интересных объектов: фуллерены внутри углеродных нанотрубок образуют «гороховые стручки» (peapods ), имеющие перспективу использования в лазерах, одноэлектронных транзисторах, спиновых кубитах для квантовых компьютеров и др., при этом воздействие электронного пучка может привести к полимеризации фуллерена во внутреннюю углеродную трубку. С другой стороны, присоединение фуллерена на поверхность нанотрубки создает «нанопочку», имеющую перспективные эмиссионные свойства.

В ФГБНУ ТИСНУМ (Москва, Троицк) в 1993 году впервые В. Д. Бланком, М. Ю. Поповым и С. Г. Бугой был получен новый материал на основе фуллеренов - ультратвердый фуллерит, или тиснумит, который обладает рекордными упругими константами и твердостью и способен даже царапать алмаз. Л. А. Чернозатонский предложил модель такого полимера, отлично совпавшую с экспериментом. Уникальные свойства этого материала связаны, вероятно, с тем, что полимеризованный фуллерит в нем находится в сжатом состоянии, значительно повышая механическую жесткость и твердость всего материала. Образцы ультратвердого углерода были впоследствии получены и в других группах.



Неуглеродные фуллерены

Замкнутую полую структуру могут образовывать не только атомы углерода. Естественным было бы ожидать, что нитрид бора - изоэлектронный аналог углерода - тоже может формировать молекулу подобной формы. Однако такие структуры были получены лишь в 1998 году, а первыми членами ряда неуглеродных фуллеренов стали замкнутые структуры состава MoS2 и WS2. Эти соединения принадлежат классу дихалькогенидов переходных металлов - соединений, состоящих из слоев атомов металла с присоединенными с обеих сторон слоями халькогена (в данном случае серы). Особенностью таких фуллеренов является их химическая инертность, которая позволяет использовать их в качестве отличного смазывающего вещества. Компании NanoMaterials и N.I.S. продают такую продукцию объемами более 1000 тонн в год.


На данный момент открыто несколько десятков неуглеродных фуллеренов, имеющих различную структуру и состав. Часто синтезу предшествует теоретическое предсказание, позволяющее оценить свойства материала. Например, в 2001 году были предложены модели фуллеренов из диборида магния. В 2007 году в группе Бориса Якобсона (Университет Райса) был предсказан фуллерен, состоящий полностью из бора B80, имеющий такую же симметрию, что и С60. Статья о такой красивой молекуле вызвала большой интерес со стороны научного сообщества, был предсказан ряд стабильных борных фуллеренов, содержащих разное число атомов, а в 2014 году вышла статья, в которой было сообщено об успешном синтезе борного фуллерена B40. Недавно была опубликована работа с предсказанием стабильной структуры С60Sc20 - фуллерена, в котором пятичленные циклы атомов углерода соединены друг с другом через атомы металла. Такая молекула демонстрирует хорошую устойчивость и, вероятно, может быть использована как сорбент для молекулярного водорода. Дело осталось за экспериментом.

Дополнительная литература

Крото Г. Симметрия, космос, звезды и С60 // Успехи физических наук. 1998. Т. 168, № 3. С. 343.

Jones D. E.H. Ariadne // New Sci. 1966. Vol. 32. P. 245.

Osawa E. Supersymmetry // Kagaku Kyoto. 1970. Vol. 25. P. 854.

Бочвар Д. А., Гальперн Е.Г. Электронная структура молекул С20 и С60 // ДАН СССР Серия химическая. 1973. Т. 209, № 3. С. 610–615.

Смолли Р.Е. Открывая фуллерены // Успехи физических наук. 1998. Т. 168, № 3. С. 323.

Nasibulin A.G. et al. A novel hybrid carbon material // Nat. Nanotechnol. 2007. Vol. 2, № 3. P. 156–161.

Blank V. et al. Is C60 fullerite harder than diamond? // Phys. Lett. A. 1994. Vol. 188, № 3. P. 281–286.

Chernozatonskii L.A., Serebryanaya N.R., Mavrin B.N. The superhard crystalline three-dimensional polymerized C60 phase // Chem. Phys. Lett. 2000. Vol. 316, № 3-4. P. 199–204.

Чернозатонский Л.А. Бифуллерены и бинанотрубы из диборидов // Письма в ЖЭТФ. 2001. Т. 74, № 6. С. 369–373.

Gonzalez Szwacki N., Sadrzadeh A., Yakobson B.I. B80 Fullerene: An Ab Initio Prediction of Geometry, Stability, and Electronic Structure // Phys. Rev. Lett. 2007. Vol. 98, № 16. P. 166804.

Zhai H.-J. et al. Observation of an all-boron fullerene // Nat. Chem. 2014. Vol. 6. P. 727–731.

Wang J., Ma H.-M., Liu Y. Sc20C60: a volleyballene // Nanoscale. 2016.

Фуллере́н , бакибо́л или букибо́л - молекулярное соединение, принадлежащее классу аллотропных форм углерода и представляющее собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомовуглерода. Своим названием фуллерены обязаны инженеру и архитектору Ричарду Бакминстеру Фуллеру, чьи геодезические конструкции построены по этому принципу. Первоначально данный класс соединений был ограничен лишь структурами, включающими только пяти- и шестиугольные грани. Заметим, что для существования такого замкнутого многогранника, построенного из n вершин, образующих только пяти- и шестиугольные грани, согласно теореме Эйлера для многогранников, утверждающей справедливость равенства (где и соответственно количество вершин, ребер и граней), необходимым условием является наличие ровно 12 пятиугольных граней и шестиугольных граней. Если в состав молекулы фуллерена, помимо атомов углерода, входят атомы других химических элементов, то, если атомы других химических элементов расположены внутри углеродного каркаса, такие фуллерены называются эндоэдральными, если снаружи - экзоэдральными

В молекулах фуллеренов атомы углерода расположены в вершинах правильных шести- и пятиугольников, из которых составлена поверхность сферы или эллипсоида. Самый симметричный и наиболее полно изученный представитель семейства фуллеренов - фуллерен (C 60), в котором углеродные атомы образуют усечённый икосаэдр, состоящий из 20 шестиугольников и 12 пятиугольников и напоминающий футбольный мяч. Так как каждый атом углерода фуллерена С 60 принадлежит одновременно двум шести- и одному пятиугольнику, то все атомы в С 60 эквивалентны, что подтверждается спектром ядерного магнитного резонанса (ЯМР) изотопа 13 С - он содержит всего одну линию. Однако не все связи С-С имеют одинаковую длину. Связь С=С, являющаяся общей стороной для двух шестиугольников, составляет 1.39 Å, а связь С-С, общая для шести- и пятиугольника, длиннее и равна 1.44 Å . Кроме того, связь первого типа двойная, а второго - одинарная, что существенно для химии фуллерена С 60 .

Ученые США и Германии выделили наименьший из фуллеренов* - молекулу С 20 . Самая известная молекула из фуллеренов - С 60 . Входящие в ее состав 60 атмов углерода расположены в высотах усеченного икосаэдра. Эта фигура, состоящая из 12 пятиугольников и 20 шестиугольников, напоминает футбольный мяч. Среди граней молекулы С 20 нет шестиугольников, только 12 пятиугольников.



В течение некоторого времени получение молекулы С 20 считалось теоретически возможным - эксперт SEED Бернд Эгген спрогнозировал это открытие еще 10 лет назад - но это было трудно осуществить. Одна из причин этого в том, что из-за меньшего размера молекулы по сравнению с другими фуллеренами она более искривлена и обладает тенденцией к пружинному раскрытию. Она очень легко вступает в связь с другими элементами, образуя другие молекулы.

Получение молекулы С 20 удалось после того, как была получена двадцатигранная молекула C 20 H 20 - устойчивый углеводород, состоящий из 20 атомов углерода и 20 атомов водорода. В ходе двухступенчатого процесса атомы водорода были замещены атомами брома, которые обладают меньшей связывающей способностью с атомами углерода. Затем бром был удален и получилась молекула С 20 .

Полученные молекулы С 20 были довольно нестабильны, но их мимолетное присутствие было зарегистрировано спектроскопией.



К тому же этому крошечному футбольному мячу исследователи создали две другие формы С 20 , то есть изомеры этой молекулы, одна из них - в форме кольца, а другая - в форме чаши.

Фуллерен в качестве материала для полупроводниковой техники[править | править вики-текст]

Молекулярный кристалл фуллерена является полупроводником с шириной запрещённой зоны ~1.5 эВ и его свойства во многом аналогичны свойствам других полупроводников. Поэтому ряд исследований был связан с вопросами использования фуллеренов в качестве нового материала для традиционных приложений в электронике: диод, транзистор, фотоэлемент и т. п. Здесь их преимуществом по сравнению с традиционным кремнием является малое время фотоотклика (единицы нс). Однако существенным недостатком оказалось влияние кислорода на проводимость плёнок фуллеренов и, следовательно, возникла необходимость в защитных покрытиях. В этом смысле более перспективно использовать молекулу фуллерена в качестве самостоятельного наноразмерного устройства и, в частности, усилительного элемента .

Фуллерен как фоторезист[править | править вики-текст]

Под действием видимого (> 2 эВ), ультрафиолетового и более коротковолнового излучения фуллерены полимеризуются и в таком виде не растворяются органическими растворителями. В качестве иллюстрации применения фуллеренового фоторезиста можно привести пример получения субмикронного разрешения (≈20 нм) притравлении кремния электронным пучком с использованием маски из полимеризованной плёнки С 60 .

См. также: Технологический процесс в электронной промышленности

Фуллереновые добавки для роста алмазных плёнок методом CVD[править | править вики-текст]

Другой интересной возможностью практического применения является использование фуллереновых добавок при росте алмазных плёнок CVD-методом (Chemical Vapor Deposition). Введение фуллеренов в газовую фазу эффективно с двух точек зрения: увеличение скорости образования алмазных ядер на подложке и поставка строительных блоков из газовой фазы на подложку. В качестве строительных блоков выступают фрагменты С 2 , которые оказались подходящим материалом для роста алмазной плёнки. Экспериментально показано, что скорость роста алмазных плёнок достигает 0.6 мкм/час, что в 5 раз выше, чем без использования фуллеренов. Для реальной конкуренции алмазов с другими полупроводниками в микроэлектронике необходимо разработать метод гетероэпитаксии алмазных плёнок, однако рост монокристаллических плёнок на неалмазных подложках остаётся пока неразрешимой задачей. Один из возможных путей решения этой проблемы - использование буферного слоя фуллеренов между подложкой и плёнкой алмазов. Предпосылкой к исследованиям в этом направлении является хорошая адгезия фуллеренов к большинству материалов. Перечисленные положения особенно актуальны в связи с интенсивными исследованиями алмазов на предмет их использования в микроэлектронике следующего поколения. Высокое быстродействие (высокая насыщенная дрейфовая скорость); максимальная, по сравнению с любыми другими известными материалами, теплопроводность и химическая стойкость делают алмаз перспективным материалом для электроники следующего поколения .

Сверхпроводящие соединения с С 60 [править | править вики-текст]

Молекулярные кристаллы фуллеренов - полупроводники, однако в начале 1991 года было установлено, что легирование твёрдого С 60 небольшим количеством щелочного металла приводит к образованию материала с металлической проводимостью, который при низких температурах переходит в сверхпроводник. Легирование С 60 производят путём обработки кристаллов парами металла при температурах в несколько сотен градусов Цельсия. При этом образуется структура типа X 3 С 60 (Х - атом щелочного металла). Первым интеркалированным металлом оказался калий. Переход соединения К 3 С 60 в сверхпроводящее состояние происходит при температуре 19 К. Это рекордное значение для молекулярных сверхпроводников. Вскоре установили, что сверхпроводимостью обладают многие фуллериты, легированные атомами щелочных металлов в соотношении либо Х 3 С 60 , либо XY 2 С 60 (X,Y - атомы щелочных металлов). Рекордсменом среди высокотемпературных сверхпроводников (ВТСП) указанных типов оказался RbCs 2 С 60 - его Т кр =33 К .

Влияние малых добавок фуллереновой сажи на антифрикционные и противоизносные свойства ПТФЭ[править | править вики-текст]

Следует отметить, что присутствие фуллерена С 60 в минеральных смазках инициирует на поверхностях контртел образование защитной фуллерено-полимерной пленки толщиной - 100 нм. Образованная пленка защищает от термической и окислительной деструкции, увеличивает время жизни узлов трения в аварийных ситуациях в 3-8 раз, термостабильность смазок до 400-500 °C и несущую способность узлов трения в 2-3 раза, расширяет рабочий интервал давлений узлов трения в 1,5-2 раза, уменьшает время приработки контртел.

Другие области применения[править | править вики-текст]

Среди других интересных приложений следует отметить аккумуляторы и электрические батареи, в которых так или иначе используются добавки фуллеренов. Основой этих аккумуляторов являются литиевые катоды, содержащие интеркалированные фуллерены. Фуллерены также могут быть использованы в качестве добавок для получения искусственных алмазов методом высокого давления. При этом выход алмазов увеличивается на ≈30 %.

Фуллерены могут быть также использованы в фармакологии для создания новых лекарств. Так, в 2007 году были проведены исследования, показавшие, что эти вещества могут оказаться перспективными для разработки противоаллергических средств .

Различные производные фуллеренов показали себя эффективными средствами в лечении вируса иммунодефицита человека: белок, ответственный за проникновение вируса в кровяные клетки - ВИЧ-1-протеаза, - имеет сферическую полость диаметром 10 Ǻ, форма которой остается постоянной при всех мутациях. Такой размер почти совпадает с диаметром молекулы фуллерена. Синтезировано производное фуллерена, которое растворимо в воде. Оно блокирует активный центр ВИЧ-протеазы, без которой невозможно образование новой вирусной частицы .

Кроме того, фуллерены нашли применение в качестве добавок в интумесцентные (вспучивающиеся) огнезащитные краски. За счёт введения фуллеренов краска под воздействием температуры при пожаре вспучивается, образуется достаточно плотный пенококсовый слой, который в несколько раз увеличивает время нагревания до критической температуры защищаемых конструкций.

Также фуллерены и их различные химические производные используются в сочетании с полисопряжёнными полупроводящими полимерами для изготовления солнечных элементов.

Химические свойства[править | править вики-текст]

Фуллерены, несмотря на отсутствие атомов водорода, которые могут быть замещены как в случае обычных ароматических соединений, всё же могут быть функционализированы различными химическими методами. Например, успешно были применены такие реакции для функционализации фуллеренов, как реакция Дильса - Альдера, реакция Прато, реакция Бингеля. Фуллерены также могут быть прогидрированы с образованием продуктов от С 60 Н 2 до С 60 Н 50 .

Курсовая работа на тему

«Аллотропные модификации углерода: фуллерены, графен, углеродные нанотрубки: строение, свойства, способы получения»



Введение

Структурные особенности графена

Структурные дефекты графена

Свойства графена

Получение графена

Применение графена

Фуллерены

Строение фуллеренов

Свойства фуллеренов

Получение фуллеренов

Применение фуллеренов

Углеродные нанотрубки

Структура нанотрубок

Свойства нанотрубок

Получение нанотрубок

Применение нанотрубок

Заключение

Литература


Введение


Атом углерода, будучи элементом четвертой группы главной подгруппы Периодической Системы, имеет в своем обычном состоянии два неспаренных валентных р-электрона на внешнем электронном уровне: 1s22s22p2. При переходе в возбужденное состояние один электрон с 2s-подуровня переходит на вакантную 2p-орбиталь, таким образом реализуется высшая валентность атома углерода, и образуется атом с четырьмя неспаренными электронами. Несмотря на то, что возбужденное состояние является менее энергетически выгодным состоянием атома, большинство известных углеродных соединений содержат углерод именно в четырехвалентном состоянии, так как выделяющаяся при образовании новых ковалентных связей энергия компенсирует энергетические затраты на переход электрона с s-подуровня на р-подуровень. В процессе образования четырех ковалентных связей происходит выравнивание s и р-электронных облаков с образованием одинаковых по форме и энергии гибридных орбиталей, участвующих в перекрывании. В зависимости от типа гибридизации образуются различные по строению структуры: линейная (одномерная), плоскостная (двумерная) или объемная тетраэдрическая (трехмерная) структуры. Понимание связи между типом гибридизации электронных облаков и строением молекул или кристаллов очень важно при изучении углерода и его многочисленных форм и соединений.

Еще одной важной особенностью атома углерода является его способность образовывать высокомолекулярные структуры: замкнутые и незамкнутые, разветвленные и неразветвленные цепи.

Долгие годы считалось, что углерод может образовывать всего две кристаллические структуры: графит и алмаз.

Алмаз имеет пространственную структуру, в которой атомы углерода находятся в sp3-гибридном состоянии и образуют 4 прочные ковалентные связи, ориентированные относительно друг друга в пространстве.

Структура графита слоистая, каждый атом углерода в sp2-гибридном состоянии образует три прочные ковалентные связи с атомами, расположенными в одной плоскости. Поскольку связи направлены под углом 120о, то структура слоя состоит из правильных шестиугольников с атомами углерода в вершинах. Атомы соседних слоев связаны относительно слабыми силами Ван-дер-Ваальса, поэтому связи между слоями менее прочные, и слои легко разделить.

В дальнейшем стало известно, что углерод существует во множестве аллотропных модификаций с различными физическими свойствами:

Лонсдейлит

Фуллерены

Фуллерит

Наноалмаз

Углеродные нанотрубки

Кроме этих кристаллических форм углерод может существовать и в аморфном виде:

Древесный уголь

Активированный уголь

Антрацит

А так же могут образоваться кластерные формы:

Астрален

Диуглерод.


Графен представляет собой однослойную двумерную углеродную структуру, состоящую из правильных шестиугольников со стороной 0,142 нм и атомами углерода в вершинах. Эта структура является составляющей кристаллического графита, в котором такие графеновые слои располагаются на расстоянии 3,4 нм друг от друга.

Каждый атом углерода в графене окружен тремя ближайшими соседями и обладает четырьмя валентными электронами, три из которых образуют sp2-гибридизованные орбитали, расположенные в одной плоскости под углами 120о и формирующие ковалентные связи с соседними атомами. Четвертый электрон, представленный ориентированной перпендикулярно этой плоскости негибридизованной pz-орбиталью, отвечает за низкоэнергетические электронные свойства графена.

Довольно большое расстояние и слабые связи между слоями давно наталкивали ученых на мысль, что одиночный слой графита может быть отделен. Однако физики сомневались в термодинамической устойчивости двумерного кристалла. В 2004 году ученые Новоселов К.С. и Гейм А.К. получили первые образцы графена весьма остроумным способом, отделив одиночный слой графита с помощью скотча. За новаторские исследования этого двумерного материала им была присуждена Нобелевская премия по физике за 2010 год. С тех пор интерес к графену только увеличивается. Благодаря его особым физико-химическим свойствам, возможно его широкое применение в качестве основы для новых наноматериалов.


2. Структурные особенности графена

Итак, графен - это плоская однослойная структура, которая является основой как трехмерного графита, так и двумерных фуллеренов и нанотрубок.

Графен оказался устойчив при комнатной температуре. Находясь на ровной подложке, он механически стабилен. Теоретически можно представить бесконечные листы графена правильной структуры. Но реальные образцы графена не бывают без структурных дефектов, которые тщательно изучаются, потому что сильно влияют на свойства.

Например, возможен разный вид границы образца. Для характеристики структуры границы графена часто используется понятие угол хиральности, который определяется как угол ориентации границы графена относительно линии, составленной шестиугольниками, стоящими на вершинах и граничащими друг с другом. Если угол хиральности равен 0о, то структура границы зигзагообразная (б). Если угол хиральности равен 30о, то структура границы кресельная (а). Также возможны промежуточные структуры с углами хиральности от 0 до 30о.


Структура границы графена определяет анизотропию его транспортных характеристик, за счет различия в значениях постоянной решетки в различных направлениях.


Структурные дефекты графена


В зависимости от метода синтеза, температуры и других условий, поверхность графена содержит структурные дефекты, которые нарушают его свойства. Существуют два наиболее существенных дефекта: вакансионный и Стоуна-Уэльса.

Вакансионный дефект означает отсутствие некоторых атомов углерода в правильной гексагональной структуре листа.

Дефектом Стоуна-Уэльса называется замена некоторых шестиугольников на пяти и семиугольники.


Кроме этих изменений в стуктуре, возможно присоединение атома, радикала или функциональной группы к поверхности графена, например, гидроксогруппы или атома водорода. Присоединение атома водорода приводит к образованию гидрогенизированной разновидности графена - графана. Присоединение водорода к графену приводит к деформации первоначально плоского моноатомного графитового слоя, поскольку гибридизация всех атомов углерода в новой решетке изменяется с плоской sp2 на тетраэдрическую sp3. В результате данной модификации структуры из проводника графена получается диэлектрик графан.

Главным моментом в этом открытии ученые считают тот факт, что оно показало, что с использованием не слишком сложных химических реакций графен можно модифицировать, а значит - создавать на его основе новые производные материалы с новыми полезными свойствами. Ведь любые изменения в структуре приводят к изменению расстояний между атомами в гексагональной ячейке графена, а значит, к видоизменению его плоской структуры и свойств.


Свойства графена


На сегодняшний день графен - самый тонкий материал, известный человечеству, толщиной всего в один атом углерода.

Малый размер атома углерода и высокая прочность химических связей между атомами углерода придает графену целый ряд очень важных уникальных свойств:

химическая стабильность

высочайшая подвижность носителей заряда

высокая тепло и электропроводность

исключительная прочность и упругость

непроницаемость

почти полная прозрачность.

Носители заряда в графене практически не имеют массы и движутся с огромной скоростью (почти со скоростью света), объясняя его уникальные свойства.

Электроны взаимодействуют друг с другом и ведут себя как в сверхпроводниках или магнитах. Как у металлов, у графена есть зона электропроводности, в которой перемещаются электроны, но в отличие от полупроводников, у графена нет запрещенной энергетической зоны, поэтому поток носителей не прекращается.

Из-за этого пока нельзя использовать графен для изготовления полупроводникового транзистора, т.к. его можно будет включить, но нельзя выключить. Формируя графеновые наноленты путем подбора ориентации и ширины графена или используя определенные полевые структуры, запрещенная зона может быть открыта. Добавляя к графену донора или акцептора электронов, можно изменять его проводимость, превращая в аналог электронного или дырочного проводника.

Свободно «подвешенный» лист графена обладает аномально высокой теплопроводностью, она почти в 2,5 раза превосходит теплопроводность алмаза. Теплопроводность листа графена, лежащего на подложке, почти на порядок ниже. При соединении нескольких слоев графена теплопроводность падает.

Кроме того, в зависимости от приложенного внешнего напряжения, возможно изменение оптических свойств графена: он может быть либо прозрачным, либо не прозрачным.

Получение графена


Высокий интерес к применению графена заставляет исследователей искать новые методы его получения. Изготовление графена микромеханическим методом оказалось довольно трудоемким, поэтому большую популярность в последнее время приобретает альтернативный способ получения графена - эпитаксиальное выращивание, при котором слои графена образуются на поверхности кристалла SiC, нагреваемого до высокой температуры в вакууме.

Также рассматриваются способы жидкофазного разделения слоев графита с помощью поверхостно-активных веществ (ПАВ), сильных газообразных окислителей типа кислорода и галогенов, расщепление графита ультразвуком.


Применение графена


Потенциальные области применения графена включают

замену углеродных волокон в композитных материалах, с целью создания более легковесных самолетов и спутников;

замена кремния в транзисторах;

внедрение в пластмассу, с целью придания ей электропроводности;

датчики на основе графена могут обнаруживать опасные молекулы;

использование графеновой пудры в электрических аккумуляторах, с целью увеличения их эффективности;

оптоэлектроника;

более крепкий, прочный и легкий пластик;

герметичные пластиковые контейнеры, которые позволят неделями хранить в нем еду, и она будет оставаться свежей;

прозрачное токопроводящее покрытие для солнечных панелей и для мониторов;

более крепкие ветряные двигатели;

более устойчивые к механическому воздействию медицинские имплантаты;

лучшее спортивное снаряжение;

суперконденсаторы;

высокомощные высокочастотные электронные устройства;

искуственные мембраны для разделения двух жидкостей в резервуаре;

улучшение тачскринов, жидкокристаллических дисплеев.

Исследователи из Австралии создали бумагу из множества слоёв графена. Она показала удивительные механические свойства, сохраняя хорошую гибкость и высокую упругость. Специалисты из технологического университета Сиднея использовали комбинацию химической и тепловой обработки, чтобы аккуратно отделить от графита одноатомные слои, очистить их и выложить как бутерброд в идеально выровненную структуру из гексагональных решёток атомов углерода - графеновую бумагу. Ее плотность - в пять-шесть раз ниже, чем у стали, а твердость и прочность в несколько раз выше.

Эксперименты показали, что графен может резко снизить коэффициент трения и износ металлических деталей без использования масел, загрязняющих окружающую среду. Покрытие из графена безвредно, защищает металл от коррозии и самоориентируется в начале движения детали, обеспечивая минимальное трение. Более того, утилизация и повторное использование графена не требует сложных технологий - достаточно ополоснуть деталь растворителем и извлечь графен.

Графен предоставляет неограниченные возможности практически во всех областях индустрии и производства. Со временем, он вероятно станет для нас обычным материалом, подобно пластику в наши дни.


7. Фуллерены


Фуллерены - полициклические полые структуры сферической формы, состоящие из атомов углерода, связанных в шести- и пятичленные циклы. Это новая модификация углерода, для которой, в отличие от других известных модификаций (алмаза, графита, карбина, графена), характерна не полимерная, а молекулярная структура.

Свое название эти вещества получили по имени американского инженера и архитектора Ричарда Букминстера Фуллера, конструировавшего полусферические архитектурные сооружения, состоящие из шести- и пятиугольников.

Первоначально возможность существования структуры, состоящей из 60 углеродных атомов (C60-фуллерена), была обоснована теоретически (Д.А. Бочвар, Е.Н. Гальперин, СССР, 1978 г.). В 1980-х гг. астрофизическими исследованиями установлено присутствие чисто углеродных молекул различного размера на некоторых звездах ("красных гигантах"). Впервые фуллерены C60 и C70 были синтезированы в 1985 г. Х. Крото и Р. Смолли из графита под действием лазера (Нобелевская премия по химии, 1996 г). Получить C60-фуллерен в количествах, достаточных для исследований, удалось в 1990 г Д. Хаффману и В. Кретчмеру, которые провели испарение графита с помощью электрической дуги в атмосфере гелия.

В 1992 г. были обнаружены природные фуллерены в углеродном минерале - шунгите (свое название этот минерал получил от названия поселка Шуньга в Карелии) и других докембрийских породах. Здесь вблизи Онежского озера залегают уникальные минеральные породы, именуемые шунгитами, возраст которых составляет около двух миллиардов лет. Шунгиты содержат до 90% чистого углерода, в том числе примерно одну сотую долю процента в виде фуллерена. Возможно, происхождение этого минерала как раз и объясняется падением большого углеродного метеорита.

Здесь с незапамятных времен существует целебный источник, вблизи которого Петр I построил первый в России курорт «Марциальные воды». Сотни лет люди пользовались чудесным родником, протекавшим сквозь шунгитовые породы, для избавления от своих болезней, не зная причину его лечебных свойств. Однако его воду нельзя разлить в бутылки и использовать по мере надобности - уже через несколько часов она теряет свою целебность. Возможно, что недолговечность целебных свойств марциальных вод и объясняется тем, что проходя через шунгитовые породы, которые содержат фуллерены и фуллереноподобные образования, вода не растворяет их, а лишь на некоторое время «насыщается» их структурой. При этом образуются гидратированные молекулы фуллеренов, которые легко теряют водную оболочку. Украинские ученые изучают антиоксидантные свойства водных растворов фуллеренов, которые могут нейтрализовать вредное воздействие свободных радикалов на организм человека, и, значит, помогают омолаживать организм.


Строение фуллеренов


Молекулы фуллеренов могут содержать от 20 до 540 углеродных атомов, расположенных на сферической поверхности.


Наиболее устойчивое и лучше изученное из этих соединений - C60-фуллерен (60 атомов углерода) состоит из 20 шестичленных и 12 пятичленных циклов. Фуллерены с n< 60 оказались неустойчивыми, хотя из чисто топологических соображений наименьшим возможным фуллереном является правильный додекаэдр С20. Все атомы углерода в молекуле C60-фуллерена находятся в sp2-гибридном состоянии и связаны с тремя другими атомами углерода. Негибридизованные p-орбитали углеродных атомов располагаются перпендикулярно сферической поверхности, образуя ?-электронное облако снаружи и внутри сферы.

Углеродный скелет молекулы C60-фуллерена представляет собой усечённый икосаэдр.

Углеродные шестичленные циклы внешне напоминают бензол. Однако сходство оказалось чисто внешним. На это указывают результаты рентгеноструктурного анализа. В каждом шестиугольном цикле имеются три фиксированные кратные связи (длина 0,138 нм) и три простые связи (длина 0,143нм). В бензольном кольце длина всех связей одинакова и имеет промежуточное значение 0,140 нм. Кратные связи располагаются на линии соприкосновения двух шестиугольников, простые - пяти- и шестиугольника. Все вершины каркаса и, стало быть, атомы углерода эквивалентны, поскольку каждая вершина находится в точке, где сходятся один пяти- и два шестиугольника. Диаметр молекулы фуллерена C60 примерно 1 нм.


Свойства фуллеренов


Фуллерен С60 - это очень устойчивое соединение, т.к. все электроны в нем задействованы в образовании углерод-углеродных связей. В кристаллическом виде он не реагирует с кислородом воздуха, устойчив к действию кислот и щелочей, не плавится до температуры 360 °С. Фуллерен хорошо растворяется в органических растворителях.

Фуллерен не вступает в реакции, характерные для ароматических соединений, его химия совсем иная. Прежде всего, невозможны реакции замещения, т. к. у атомов углерода нет никаких боковых заместителей. Обилие изолированных кратных связей позволяет считать фуллерен полиолефиновой системой. Для него наиболее типично присоединение по кратной связи. Известны продукты присоединения к фуллеренам атомов водорода и галогенов, органических радикалов, происходит также присоединение циклов, получены фуллерен-содержащие полимерные материалы и многосферные соединения фуллеренов. В случае C60, например, можно присоединить до 48 заместителей без разрушения углеродного каркаса (например, получить C60F48).

Кроме реакций присоединения возможно внедрение атомов и малых кластеров внутрь углеродного каркаса, которое приводит к образованию эндоэдральных соединений, например, металлофуллеренов.

Соединения фуллеренов со щелочными металлами являются сверхпроводниками, в то время как чистый фуллерен - изолятор, а легированные фуллерены - ферромагнетиками. Молекулы некоторых фуллеренов способны кристаллизовываться с образованием кубической кристаллической решетки - фуллерит.

10. Получение фуллеренов


Лазерные испарения графита в потоке гелия

Термическое испарение графита

Дуговой контактный разряд. путём сжигания графитовых электродов в электрической дуге в атмосфере гелия при низких давлениях. Этот метод Кретчмера и Хаффмана долгое время оставался наиболее распространенным, хотя его производительность невелика, но зато он позволяет получить чистые фуллерены.

Сжигание и пиролиз углеродсодержащих соединений. Этот метод разработан фирмой Mitsubishi, но получаемые фуллерены содержат кислород.

Ученые продолжают искать новые способы получения и синтеза фуллерена, но все они дают небольшой выход продукта и весьма дорогостоящи.


Применение фуллеренов


Фуллерены имеют многие перспективные области применения. Сдерживающим фактором является их стоимость их получения.

Фуллерены являются уникальным функциональным материалом электроники и оптики, энергетики, биохимии и молекулярной медицины. Особенно выражены преимущества фуллерена в следующих практических приложениях:

) модифицирование фуллеренами стали приводит к значительному повышению ее прочности, износо- и термостойкости;

) добавка фуллеренов в чугун придает ему пластичность;

) в керамических изделиях введение фуллеренов снижает коэффициент трения;

) использование фуллеренов в полимерных композитах, способно увеличить его прочностные характеристики, термоустойчивость и радиационную стойкость, значительно уменьшить коэффициент трения;

) микродобавка фуллеренововой сажи в бетонные смеси и пломбирующие составы повышает марку материала;

) фуллерены в качестве основы для производства аккумуляторных батарей (принцип действия основан на реакции присоединения водорода) обладают способностью запасать примерно в пять раз большее количество водорода, характеризуются более высокой эффективностью, малым весом, а также экологической и санитарной безопасностью по сравнению с аккумуляторами на основе лития;

) фуллерен в качестве материала для полупроводниковой техники (традиционные приложения в электронике: диод, транзистор, фотоэлемент и т.п.) - преимуществом по сравнению с традиционным кремнием в фотоэлементах является малое время фотоотклика;

) преимущества использования фуллеренов в качестве катализаторов лежат в их способности принимать и передавать атомы водорода; они также высокоэффективны в ускорении реакции преобразования метана в высшие углеводороды и способны замедлять реакции коксования;

) при использовании фуллеренов в качестве добавок для получения искусственных алмазов методом высокого давления выход алмазов увеличивается на?30%;

) фуллерены являются мощными антиоксидантами, быстро вступающими в реакцию со свободными радикалами, которые часто являются причиной повреждения и смерти клеток.


12. Углеродные нанотрубки


Углеродные нанотрубки - полые цилиндрические структуры, образованные сворачиванием графена в цилиндр с соединением его сторон без шва.

Считается, что первооткрывателем углеродных нанотрубок является сотрудник японской корпорации NEC Сумио Ииджима, который в 1991 году наблюдал структуры многослойных нанотрубок при изучении под электронным микроскопом осадков, которые образовывались в процессе синтеза молекулярных форм чистого углерода, имеющего клеточную структуру. История открытия и изучения нанотрубок тесно связана с открытием и изучением фуллеренов.


Структура нанотрубок


Углеродные нанотрубки классифицируют по количеству слоев: однослойные и многослойные.

Однослойные трубки - простейший вид нанотрубок. Диаметр однослойных нанотрубок, по экспериментальным данным, варьируется от ~ 0,7 нм до ~ 3-4 нм. Длина однослойной нанотрубки может достигать 4 см.

Сворачивание графена в цилиндр без шва возможно только конечным числом способов, отличающихся направлением двумерного вектора, который соединяет две эквивалентные точки на графене, совпадающие при его сворачивании в цилиндр. Этот вектор называется вектором хиральности однослойной углеродной нанотрубки. Таким образом, однослойные углеродные нанотрубки различаются диаметром и хиральностью.

Существуют три формы нанотрубок: ахиральные типа «кресла» (две стороны каждого шестиугольника ориентированы перпендикулярно оси нанаотрубки), ахиральные типа «зигзаг» (две стороны каждого шестиугольника ориентированы параллельно оси нанотрубки) и хиральные или спиралевидные (каждая сторона шестиугольника расположена к оси нанотрубки под углом, отличным от 0 и 90º).

Однослойные нанотрубки обычно заканчиваются полусферической головкой, которая наряду с шестиугольниками включает в себя правильные пятиугольники и напоминают половину молекулы фуллерена.


Многослойные нанотрубки состоят из нескольких слоев графена, сложенных в форме трубки. Расстояние между слоями равно 0.34 нм, то есть такое же, как и между слоями в кристаллическом графите.

Существуют две модели, использующиеся для описания их структуры. Многослойные нанотрубки могут представлять собой несколько однослойных круглых или шестигранных нанотрубок, вложенных одна в другую (так называемая "матрешка"). В другом случае, один "лист" графена оборачивается несколько раз вокруг себя, что похоже на прокрутку пергамента или газеты (модель "свиток").


Свойства нанотрубок


Электрические свойства однослойных нанотрубок зависят от хиральности. В зависимости от хиральности одностенная нанотрубка может вести себя как полуметалл, не имеющий запрещенной зоны либо как полупроводник, имеющий запрещенную зону.

Механические свойства: нанотрубки оказались на редкость прочным материалом, как на растяжение, так и на изгиб. Более того, под действием механических напряжений, превышающих критические, нанотрубки не "рвутся" и не "ломаются", а просто-напросто перестраиваются.

Важное свойство нанотрубок - выраженная зависимость их проводимости от магнитного поля.

Однослойные нанотрубки с открытым концом проявляют капиллярный эффект и способны втягивать в себя расплавленные металлы, другие жидкости, а также газообразные вещества, например, молекулярный водород.


Получение нанотрубок


Термическое распыление графитового электрода в плазме дугового разряда

Термическое распыление графита в присутствии катализатора

Лазерное распыление графита

Электролитический синтез

Каталитический крекинг ацетилена


Применение нанотрубок


Капиллярные свойства нанотрубок позволят использовать их в качестве проводящих нитей или хранилища заполняющего ее материала, например, водорода или даже радиоактивных отходов,

Высокая удельная поверхность материала, изготовленного из нанотрубок, открывает возможность их использования в качестве пористого материала в фильтрах, аппаратах химической технологии,

Возможность присоединения к поверхности нанотрубок каких-либо радикалов, которые могут служить каталитическими центрами или зародышами для разнообразных химических реакций,

Высокая механическая прочность нанотрубок в сочетании с электропроводностью опзволит применять их в качестве зондов в сканирующих микроскопах, что во много раз повысит разрешающую способность,

Малые размеры, электропроводность, стабильность и механическая прочность позволяют рассматривать нанотрубки в качестве основы будущих элементов микроэлектроники. Ученым из лаборатории IBM удалось, на основе нанотрубок, создать микросхему, которая в 500 раз меньше аналогичной кремниевой. Исследования ведущих специалистов в данной области показывают, что потенциал кремния, как основы интегральных схем будет исчерпан в течение ближайших 10-20 лет. Материалы из нанотрубок способны обеспечить новому поколению компьютеров практически неограниченные память и быстродействие.

В настоящее время главными областями применения углеродных нанотрубок являются спортивные товары (углеродные нанотрубки входят в состав композитов, из которых они изготавливаются), электроника и автомобилестроение (здесь нанотрубки используются для придания полимерам антистатических и проводящих свойств).

Однако есть и проблемы применения углеродных нанотрубок. Недавние исследования подтвердили опасность нанотрубок для человеческих клеток, что ставит под вопрос их использование в медицине. Впервые ученым из Кембриджского университета удалось наблюдать проникновение и перемещение нанотрубок внутри человеческих клеток и определить, может ли воздействие наноматериалов вызвать смерть клетки.

Кроме того, некоторые эксперты считают, что исследователи недооценивают риски, связанные с массовым производством углеродных нанотрубок. Согласно недавнему выступлению ученых из Массачусетского Технологического Института (MIT) на заседании Американского Химического Общества, (American Chemical Society), интенсивное производство этих материалов может серьезно повлиять на мировую экологию, т.к. их производство сопряжено с побочным образованием большого количества разнообразных ароматических соединений, являющихся сильнейшими канцерогенами.


Заключение


Понятия «нанотехнологии», «нанообъекты», «наночастицы» совсем недавно появились в науке, в конце прошлого века. До этого времени приставка «нано» обозначала масштаб. Но теперь с помощью этой приставки обозначают новую эру в развитии технологий, называемых иногда четвертой промышленной революцией, - эру нанотехнологий. Создание электронного микроскопа в 1931 году, а затем сканирующего туннельного микроскопа в 1981 году сделало реальностью не только наблюдение атомов, но и манипулирование ими. В 1981 г. американский ученый Г. Глейтер впервые использовал определение «нанокристаллический». Он сформулировал концепцию создания наноматериалов и развил ее в серии работ 1981-1986 гг., ввел термины «нанокристаллические», «наноструктурные», «нанофазные» и «нанокомпозитные» материалы. Главный акцент в этих работах был сделан на решающей роли многочисленных поверхностей раздела в наноматериалах как основе для изменения свойств твердых тел.

С началом нового века развитие нанотехнологий стало определяющей задачей научных исследований в мире. В определениях нанонауки и нанотехнологий наиболее существенным является указание на то, что «настоящее нано» начинается с момента появления новых свойств веществ, связанных с переходом к этим масштабам и отличающихся от свойств объемных материалов. То есть существеннейшим и важнейшим качеством наночастиц, основным отличием их от микро- и макрочастиц является появление у них принципиально новых свойств, не проявляющихся при других размерах. Открытие наноструктур углерода явилось очень важной вехой в развитии концепции наночастиц.

Углерод - всего лишь одиннадцатый по распространенности в природе элемент, однако благодаря уникальной способности его атомов соединяться друг с другом и образовывать длинные молекулы, включающие в качестве заместителей и другие элементы, возникло громадное множество органических соединений, да и сама Жизнь. Но, даже соединяясь только сам с собой, углерод способен порождать большой набор различных структур с весьма разнообразными свойствами - так называемых аллотропных модификаций. Алмаз, например, является эталоном прозрачности и твердости, диэлектриком и теплоизолятором. Однако графит - идеальный «поглотитель» света, сверхмягкий материал, один из лучших проводников тепла и электричества.графен фуллерен углеродный нанотрубка

Но всё это на макроуровне. А переход на наноуровень открывает новые уникальные свойства углерода. Сродство атомов углерода друг к другу настолько велико, что они могут без участия других элементов образовывать целый набор наноструктур, отличающихся друг от друга, в том числе и размерностью. В их число входят фуллерены, графен, нанотрубки. Наноструктуры углерода можно назвать «истинными» наночастицами, так как в них все составляющие их атомы лежат на поверхности.

Наноуровень представляет собой переходную область от уровня молекулярного, образующего базис существования всего живого, состоящего из молекул, к уровню Живого, уровню существования самовоспроизводящихся структур, а наночастицы, представляющие собой супрамолекулярные структуры, стабилизированные силами межмолекулярного взаимодействия, представляют собой переходную форму от отдельных молекул к сложным функциональным системам. Мир наноразмеров расположен между атомно-молекулярным миром и миром Живого, состоящего из тех же атомов и молекул, но организованных в сложные самовоспроизводящиеся структуры, а переход из одного мира в другой определяется не только (и не столько) размерами структур, сколько их сложностью.

Нанотехнология, в сущности, является «наукой конструирования», что делает ее мощным инструментом преобразования всех сторон общественной жизни. Она дает возможность создавать вещества на атомном и молекулярном уровне, а также дешево и быстро изготовлять предметы и товары «по заказу». Еще важнее и интереснее то, что, используя природные законы и процессы, мы получаем возможность конструировать и создавать вещества, которые никогда раньше не существовали в природе.

Развитие нанотехнологии ставит перед обществом две важнейшие проблемы: 1) насколько быстро люди смогут адаптироваться к достижениям новой науки; 2) насколько мудрыми они окажутся в использовании этих достижений. Эти факторы определят в будущем конкурентоспособность отдельных людей, организаций и даже целых государств. Умение использовать достижения новой науки и развивать ее станет стратегическим преимуществом. Те общества, которые сумеют лучше организовать социальные системы, связанные с нанотехнологиями (обучение, исследование, развитие), добьются успеха и процветания в третьем тысячелетии. Нанотехнология будет влиять на общественную жизнь в 21 в. точно также, как теперь на нее влияют цифровые технологии.


Литература


Самсонов, Г.В. Силициды и их использование в технике / Г.В. Самсонов. - Киев, АН УССР, 1959.- 204 с.

Воронков, М.Г. Удивительные элементы жизни / М.Г. Воронков, И.Г. Кузнецов - Иркутск, 1983.- 107 с.

Воронков, М.Г. Биохимия, фармакология и токсикология соединений / М.Г. Воронков, Г.И. Зелчан, Э.Я. Лукевиц. - Рига: Зинатне, 2008. - 588 с.

Аллер, Л.Х. Распространенность химических элементов / Л.Х. Аллер. - М.: Изд-во иностранной литературы, 1963. - 357 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.



© 2024 Идеи дизайна квартир и домов