Вконтакте Facebook Twitter Лента RSS

Наружные стены зданий конструктивные решения. Панельные стены и их конструктивные решения

Облик фасадов зданий, в первую очередь, формируют стены. Поэтому каменные стены должны отвечать соответствующим эстетическим требованиям. Кроме того, стены подвергаются многочисленным силовым, влажностным и другим воздействиям: собственная масса, нагрузки от перекрытий и крыш, ветер, сейсмические толчки и неравномерная деформация оснований, солнечная радиация, переменная температура и атмосферные осадки, шум и др. Поэтому стены должны отвечать требованиям прочности, долговечности, огнестойкости, защищать помещения от неблагоприятных внешних воздействий, обеспечивать в них благоприятный температурно-влажностный режим для комфортного проживания и трудовой деятельности.

В комплекс конструкции стен часто входят заполнения проемов окон и дверей, другие конструктивные элементы, которые также должны отвечать указанным требованиям.

По степени пространственной жесткости здания с каменными стенами можно разделить на здания с жесткой конструктивной схемой, к которым относятся здания с частым расположением поперечных стен, т.е. преимущественно гражданские здания, и здания с упругой конструктивной схемой, к которым относятся одноэтажные производственные, складские и другие подобные здания (в них продольные стены имеют значительную высоту и большие расстояния между поперечными стенами).

В зависимости от назначения здания или сооружения, действующих нагрузок, этажности и других факторов каменные стены подразделяются:

  • ? на несущие, воспринимающие все вертикальные и горизонтальные нагрузки;
  • ? самонесущие, воспринимающие только собственную массу;
  • ? ненесущие (фахверковые), в которых каменная кладка используется как заполнение панелей, образованных ригелями, раскосами и стойками каркаса.

Прочность каменных стен в большой степени зависит от прочности кладки:

где А - коэффициент, зависящий от прочности камня; R K - прочность камня; R p - прочность раствора.

В соответствии с этим, даже если прочность раствора будет равна О, кладка будет иметь прочность, равную 33% ее максимально возможной прочности.

Для обеспечения совместной работы и образования пространственной коробки стены обычно связывают друг с другом, с перекрытиями и каркасом при помощи анкеров. Поэтому устойчивость и жесткость каменных стен зависят не только от их собственной жесткости, но и от жесткости перекрытий, покрытий и других конструкций, которые обеспечивают опирание и закрепление стен по их высоте.

Стены бывают сплошными (без проемов) и с проемами. Сплошные стены без конструктивных элементов и архитектурных деталей называются гладкими. Различают следующие конструктивные элементы стен (рис. 7.1):

  • ? пилястры - вертикальные выступы на поверхности стены прямоугольного сечения, служащие для членения плоскости стены;
  • ? конфорсы - такие же выступы, увеличивающие устойчивость и несущую способность стены;
  • ? пилоны - кирпичные или каменные столбы, служащие опорой перекрытия или оформляющие вход в здание;
  • ? обрез кладки - место перехода по высоте от цоколя к стене;
  • ? поясок - напуск ряда кладки в целях расчленения отдельных частей фасада здания по его высоте;
  • ? сандрик - небольшой навес над проемами на фасаде здания;
  • ? карниз - напуск нескольких рядов кладки (не больше 1 /3 кирпича в ряду);
  • ? борозды - протяженные вертикальные или горизонтальные углубления в кладке для сокрытий коммуникаций;
  • ? ниши - углубления в кладке, в которых располагают приборы отопления, электрические и другие шкафы;
  • ? простенки - участки кладки, расположенные между соседними проемами;
  • ? притолоки (четверти) - выступы кладки в наружной части стены и простенков для установки оконных и дверных заполнений;
  • ? деревянные пробки (бобышки) - бруски, устанавливаемые в кладке для крепления оконных и дверных коробок.

Рис. 7.1. Конструктивные элементы стен: а - пилястры; б - контрфорсы; в - пилоны; г - обрез кладки; д - поясок; е - сандрик; ж - карниз; з - борозды; и - ниши; к - простенки; л - притолоки; м - деревянные пробки

Кладку стен ведут с обязательной перевязкой вертикальных швов. С наружной стороны стены ряды кладки могут чередоваться следующим образом:

  • ? тычковые с тычковыми;
  • ? ложковые с ложковыми;
  • ? ложковые с тычковыми;
  • ? тычковые со смешанными;
  • ? одни смешанные.

На практике наибольшее распространение получили системы с чередующимися ложковыми и тычковыми рядами. Чем больше смежных ложковых рядов, тем кладка получается менее прочной (но и менее трудоемкой), так как увеличивается число продольных вертикальных рядов и уменьшается число кирпичей, которые подвергаются колке на части. Поэтому при выборе системы перевязки кладки ориентируются на эти показатели. Широкое распространение получили системы перевязки каменных стен, приведенные на рис. 7.2.


Рис. 7.2. Системы перевязки кладки каменных стен: а, б, в, г - однорядная, соответственно цепная, крестовая, голландская, готическая; д - двухрядная английская; е - двухрядная с вставными тычками; ж - трехрядная; з - пятирядная; и - разрез стены при пятирядной перевязке; к - разрез стены при однорядной перевязке

С теплотехнической точки зрения различают три вида наружных стен по числу основных слоев: однослойные, двухслойные и трехслойные.

Однослойные стены выполняют из конструкционно-теплоизоляционных материалов и изделий, совмещающих несущие и теплозащитные функции.

В трехслойных ограждениях с защитными слоями на точечных (гибких, шпоночных) связях рекомендуется применять утеплитель из минеральной ваты, стекловаты или пенополистирола с толщиной, устанавливаемой по расчету с учетом теплопроводных включений от связей. В этих ограждениях соотношение толщин наружных и внутренних слоев должно быть не менее 1:1,25 при минимальной толщине наружного слоя 50 мм.

В двухслойных стенах предпочтительно расположение утеплителя снаружи. Используются два варианта наружного утеплителя: системы с наружным покровным слоем без зазора и системы с воздушным зазором между наружным облицовочным слоем и утеплителем. Не рекомендуется применять теплоизоляцию с внутренней стороны из-за возможного накопления влаги в теплоизоляционном слое, однако в случае необходимости такого применения поверхность со стороны помещения должна иметь сплошной и долговечный пароизоляционный слой.

При проектировании стен из кирпича и других мелкоштучных материалов следует максимально применять облегченные конструкции в сочетании с плитами из эффективных теплоизоляционных материалов.

В курсовом проекте принимается несущая стена трехслойной конструкции с несущим слоем из полнотелого керамического кирпича толщиной 380 мм, бетонных блоков или железобетона (со слоем внутренней штукатурки 20 мм), слоем теплоизоляции и защитно-декоративным наружным слоем из кирпича толщиной 120 мм или известково-цементной штукатурки толщиной 25 – 30 мм (рис. 3.1). Коэффициент теплотехнической однородности без учета откосов проемов и других теплопроводных включений - 0,95.

Для защитной стенки может применяться кирпич или камни керамические лицевые (ГОСТ 7484-78) или отборные стандартные (ГОСТ 530-95) предпочтительно полусухого прессования, а также силикатный кирпич (ГОСТ 379-95). При облицовке силикатным кирпичом цоколь, пояса, парапеты и карниз выполняют из керамического кирпича.



При облицовке кирпичная кладка армируется с несущей частью стены сварными арматурными сетками, располагаемыми с шагом по высоте 600 мм.

При отделочном слое из традиционной толстослойной штукатурки толщиной 25 – 30 мм теплоизоляционные плиты крепят к несущему слою стены на клею и дополнительно распорными дюбелями.

Наружная штукатурка выполняется из известково-цементного раствора, приготавливаемого на месте из извести, песка, цемента, воды и добавок, или из готовых растворных смесей, и армируется стальной оцинкованной сеткой по ГОСТ 2715-75 с размером ячейки 20 мм и диаметром проволоки 1 – 1,6 мм.

Приведенное сопротивление теплопередаче, м ·°С/Вт, для наружных стен следует определять согласно СНиП 23-02 для фасада здания либо для одного промежуточного этажа с учетом откосов проемов без учета их заполнений с проверкой условия невыпадения конденсата на участках в зонах теплопроводных включений.

Необходимая толщина слоя теплоизоляции должна определяться с учетом коэффициента теплотехнической однородности.

Коэффициент теплотехнической однородности с учетом теплотехнических однородностей оконных откосов и примыкающих внутренних ограждений проектируемой конструкции для:

Панелей индустриального изготовления должен быть, как правило, не менее величин, установленных в табл. 6;

Для стен жилых зданий из кирпича должен быть, как правило, не менее 0,74 при толщине стены 510 мм,

0,69 - при толщине стены 640 мм и 0,64 - при толщине стены 780 мм.

Таблица 6

Минимально допустимые значения коэффициента теплотехнической однородности для конструкций индустриального изготовления


Рис. 3.1. Конструктивные решения наружных стен

1 – стена (несущая часть); 2 – защитно-декоративная кладка; 3 – рихтовочный зазор; 4 – теплоизоляция; 5 - внутренняя штукатурка; 6 – наружная штукатурка; 7 –сварная оцинкованная металлическая сетка 20х20 Ø 1,0 – 1,6; 8 – клеевой состав для приклейки плит теплоизоляции; 9 – выравнивающая штукатурка; 10 – закладная сетка; 11 - дюбель


Пример 1.

Выполнить теплотехнический расчет наружной стены административного здания в г. Санкт-Петербурге. Конструкция наружной стены представлена на рис. 3.2.

Рис. 3.2. Расчетная схема наружной стены

1 – цементно-известковая штукатурка; 2; 4 – кирпичная кладка; 3 – плита минераловатная «КАВИТИ БАТТС»

Решение.

1. Определяем необходимые исходные данные для теплотехнического расчета:

- расчетная средняя температура внутреннего воздуха здания для теплотехнического расчета ограждающих конструкций - ˚С - минимальное значение оптимальной температуры для помещений категории 2;

Средняя температура наружного воздуха за отопительный период - °С - табл. 1 СНиП 23-01-99 ;

Продолжительность отопительного периода - сут - табл. 1 СНиП 23-01-99 ;

Влажностный режим помещений здания – нормальный – табл. 1 СНиП 23-02-2003;

Зона влажности для Санкт-Петербурга - влажная – прилож. В СНиП 23-02-2003;

Условия эксплуатации ограждающих конструкций – Б – табл. 2 СНиП 23-02-2003.

2. Нормируемое (требуемое) приведенное сопротивление теплопередаче конструкции ограждения принимается по табл. 7 в зависимости от числа градусо-суток отопительного периода или рассчитывается по зависимости

, м 2 · о С/Вт, (2)

где и - величины, определяемые по табл. 8;

– градусо-сутки отопительного периода, о С·сут, определяемые по формуле

, о С·сут, (3)

здесь - расчетная средняя температура внутреннего воздуха здания, ˚С;

Требуемое сопротивление теплопередаче стены является функцией числа градусо-суток отопительного периода (ГСОП ):

ГСОП=D=(t в - t от. пер.) · Z от. пер. ;

где: t в – расчетная температура внутреннего воздуха, о С;

t в = 20 о С – для помещения категории 3а по ГОСТ 30494-96;

t от.пер, Z от.пер – средняя температура, о С и продолжительность, сут. периода со средней суточной температурой воздуха ниже или равной 8 о С по СНиП 23-01-99* «Строительная климатология».

Для г. Санкт-Петербурга:

D = ·220=4796;

R тр =a·D+b =0,0003·4796+1,2=2,639 (м 2 · о С)/Вт.

Толщина слоя теплоизоляции при l Б = 0,044 Вт/(м· о С) и коэффициенте теплотехнической однородности r = 0,92 составит:

Принимаем слой изоляции равным 80 мм, тогда фактическое сопротивление теплопередаче составит:

1. Объект строительства - 16-этажный односекционный крупнопанельный жилой дом, построенный в г.Кашире Московской области. Условие эксплуатации ограждений Б согласно СНиП 23-02.

2. Наружные стены - из трехслойных железобетонных панелей на гибких связях с утеплителем из пенополистирола толщиной 165 мм. Панели имеют толщину 335 мм. По периметру панелей и их проемов утеплитель имеет защитный слой из цементно-песчаного раствора толщиной 10 мм. Для соединения железобетонных слоев применены два вида гибких связей из коррозионностойкой стали диаметром 8 мм: треугольные и точечные (шпильки). Расчет приведенного сопротивления теплопередаче выполнен согласно формуле (14) и соответствующего примера расчета в приложении Н.

3. Для заполнения проемов применены деревянные оконные блоки с тройным остеклением в раздельно-спаренных переплетах.

4. В стыках применен минераловатный утеплитель, снаружи закрытый уплотнителем Вилатерм.

5. Для Московской области (г.Кашира) согласно СНиП 23-01 средняя температура и продолжительность отопительного периода составляют: . Температура внутреннего воздуха =20 °С. Тогда градусо-сутки отопительного периода согласно формуле (1) составляют

=(20+3,4)·212=4961 °С·сут.

Порядок расчета

1. По таблице 4 СНиП 23-02 =4961 °С·сут соответствует нормируемое сопротивление теплопередаче для стен жилых зданий.

2. Сопротивление теплопередаче панелей по глади, рассчитанное по формуле (8), равно

3. К числу теплопроводных включений и теплотехнических неоднородностей в стенах 16-этажного панельного дома относятся гибкие связи, оконные откосы, горизонтальные и вертикальные стыки панелей, угловые стыки, примыкание панелей к карнизу и цокольному перекрытию.

Для расчета по формуле (14) коэффициентов теплотехнической однородности различных типов панелей коэффициенты влияния теплопроводных включений и площади зон их влияния рассчитаны на основе решения задач стационарной теплопроводности на компьютере соответствующих узлов и приведены в

таблице К.1.

Таблица K.1

Для первого этажа

0,78·0,962=0,75;

Для последнего этажа

0,78·0,97=0,757.

Приведенный коэффициент теплотехнической однородности фасада здания

16/(14/0,78+1/0,75+1/0,757)=0,777.

Приведенное сопротивление теплопередаче фасада 16-этажного жилого дома по формуле (23) равно

Следовательно, наружные стены 16-этажного жилого дома удовлетворяют требованиям СНиП 23-02.

Дедюхова Екатерина

На решение вопроса теплозащиты зданий и были направлены постановления, принятые в последние годы. Постановлением N 18-81 от 11.08.95 Минстроя РФ введены изменения к СНиП II-3-79 «Строительная теплотехника», где в значительной степени увеличивались требуемые сопротивления теплопередаче ограждающих конструкций зданий. Учитывая сложность поставленной задачи в экономическом и техническом плане, было намечено двухэтапное введение повышенных требований к теплопередаче при проектировании и строительстве объектов. Постановление Госстроя РФ N 18-11 от 02.02.98 «О теплозащите строящихся зданий и сооружений» устанавливает конкретные сроки выполнения решений по вопросам энергосбережения. Практически во всех объектах, начатых строительством, будут применяться меры по повышению теплозащиты. С 1 января 2000 г. строительство объектов должно осуществляться с выполнением требований по сопротивлению теплопередаче ограждающих конструкций в полном объеме, при проектировании с начала 1998 г. следует применять показатели изменения N 3 и №4 к СНиП II-3-79, соответствующие второму этапу.

Первый опыт реализации решений по теплозащите зданий поставил ряд вопросов перед конструкторами, производителями и поставщиками строительных материалов и изделий. В настоящее время нет устоявшихся, проверенных временем конструктивных решений утепления стен. Понятно, что решение проблем теплозащиты простым увеличением толщины стен не целесообразно ни с экономической, ни с эстетической точек зрения. Так, толщина кирпичной стены при выполнении всех требований может достигать 180 см.

Поэтому следует искать решение в применении композиционных конструкций стен с использованием эффективных теплоизоляционных материалов. Для незавершенных строительством и реконструируемых зданий в конструктивном плане решение принципиально можно представить в двух вариантах — утеплитель располагают с внешней стороны несущей стены или с внутренней. При расположении утеплителя внутри помещения сокращается объем помещения, а пароизоляция утеплителя, особенно при использовании современных конструкций окон с низкой воздухопроницаемостью, приводит к увеличению влажности внутри помещения, возникают мостики холода в местах сопряжения внутренних и внешних стен.

На практике признаками непродуманности в решении этих вопросов являются запотевшие окна, отсыревшие стены с нередким появлением плесени, высокая влажность в помещениях. Помещение превращается в своего рода термос. Возникает необходимость в устройстве принудительной вентиляции. Так, мониторинг жилого дома по проспекту Пушкина, 54 в Минске после его тепловой санации, позволил установить, что относительная влажность в жилых помещениях повысилась до 80% и более, то есть в 1,5-1,7 раза превысила санитарные нормы. По этой причине жильцы вынуждены открывать окна и проветривать жилые комнаты. Таким образом, установка герметичных окон при наличии приточно-вытяжной системы вентиляции значительно ухудшила качество воздушной среды в помещениях. Кроме того, много проблем уже возникает при эксплуатации таких заданий.

Если при наружной теплоизоляции теплопотери через теплопроводные включения снижаются при утолщении слоя утеплителя и в ряде случаев ими можно пренебречь, то при внутренней теплоизоляции негативное влияние этих включений возрастает с увеличением слоя толщины утеплителя. По данным французского исследовательского центра CSTB в случае устройства теплоизоляции снаружи толщина слоя утеплителя может быть на 25-30% меньше, чем для случая внутренней теплоизоляции. Внешнее расположение утеплителя на сегодня более предпочтительно, но пока нет материалов и конструктивных решений, которые в полной мере обеспечивали бы пожарную безопасность здания.

Чтобы сделать теплый дом из традиционных материалов — кирпича, бетона или дерева, — надо увеличивать толщину стен более чем в два раза. Это сделает конструкцию не только дорогой, но и очень тяжелой. Реальный выход — применение эффективных теплоизоляционных материалов.

В качестве основного способа повышения теплоэффективности ограждающих конструкций для кирпичных стен сегодня предлагается утепление в виде устройства наружной теплоизоляции, не уменьшающей площадь внутренних помещений. В некоторых аспектах она является эффективней внутренней из-за существенного превышения суммарной длины теплопроводных включений в местах примыканий внутренних перегородок и перекрытий к наружным стенам по фасаду здания над длиной теплопроводных включений в его углах. Недостаток наружного способа теплоизоляции состоит в трудоемкости и дороговизне технологии, необходимости устройства лесов снаружи здания. Не исключается и последующего оседание утеплителя.

Внутренняя теплоизоляция более выгодна при необходимости уменьшении теплопотерь в углах здания, но предусматривает множество дополнительных дорогостоящих работ, например, устройство специальной пароизоляции на оконных откосах

Теплоаккумулирующая способность массивной части стены при наружной теплоизоляции с течением времени возрастает. По данным фирмы «Karl Epple Gmbh » при наружной теплоизоляции кирпичные стены остывают при отключении источника тепла в 6 раз медленнее стен с внутренней теплоизоляцией при одной и той же толщине утеплителя. Эту особенность наружной теплоизоляции можно использовать для экономии энергии в системах с регулируемой подачей тепла, в том числе за счет ее периодического отключения.. Теплоаккумулирующая способность утепленных снаружи массивных стен может дать экономию тепла до 18% при южной ориентации светопрозрачных ограждений.. Поэтому при реконструкции, особенно в случае ее проведения без выселения жильцов, наиболее приемлемым вариантом будет дополнительная наружная теплоизоляция здания, в функции которой входят:

    защита ограждающих конструкций от атмосферных воздействий;

    выравнивание температурных колебаний основного массива стены, т.е. от неравномерных температурных деформаций;

    создание благоприятного режима работы стены по условиям ее паропроницаемости ;

    формирование более благоприятный микроклимата помещения;

    архитектурное оформление фасадов реконструируемых зданий.


При исключении негативного влияния атмосферных воздействий и конденсируемой влаги на конструкции ограждения увеличивается общая долговечность несущей части наружной стены.

До устройства наружного утепления зданий предварительно необходимо провести обследование состояния фасадных поверхностей с оценкой их прочности, наличия трещин и т.п., поскольку от этого зависит порядок и объем подготовительных работ, определение расчетных параметров, например, глубина заделки дюбелей в толще стены.

Тепловая санация фасада предусматривает утепление стен эффективными утеплителями с коэффициентом теплопроводности, равном 0,04; 0,05; 0,08 Вт/м ´° С. При этом фасадная отделка выполняется в нескольких вариантах:

— кирпичная кладка из лицевого кирпича;

— штукатурка по сетке;

— экран из тонких панелей, устанавливаемый с зазором по отношению к утеплителю (система вентилируемого фасада)

На затраты по утеплению стен влияют конструктивное решение стены, толщина и стоимость утеплителя. Наиболее экономичным является решение со штукатуркой по сетке. По сравнению с облицовкой кирпичом стоимость 1м 2 такой стены ниже на 30-35%. Значительное удорожание варианта с лицевым кирпичом обусловлено как более высокой стоимостью наружной отделки, так и необходимостью устройства дорогих металлических опор и креплений (15-20 кг стали на 1м 2 стены).

Наибольшую стоимость имеют конструкции, с вентилируемым фасадом. Удорожание по сравнению с вариантом облицовки кирпичом составляет порядка 60%. Это обусловлено, в основном, высокой стоимостью фасадных конструкций, с помощью которых осуществляется установка экрана, стоимостью самого экрана и аксессуаров крепления. Снижение стоимости таких конструкций возможно путем совершенствования системы и применения более дешевых отечественных материалов.

Тем не менее, эффективной считается изоляция, выполненная плитами URSA в полости наружной стены. При этом ограждающая конструкция состоит из двух кирпичных стен и укрепленных между ними теплоизоляционных плит URSA. Плиты URSA фиксируются с помощью анкеров, заложенных в швы кирпичной кладки. Между теплоизоляционными плитами и стеной устраивается паробарьер для предотвращения конденсации водяного пара.

Утепление ограждающих конструкций снаружи при реконструкции может производиться с помощью теплоизоляционной связующей системы «Фасолит-Т», состоящей из плит URSA, стеклянной сетки, строительного клея и фасадной штукатурки. При этом плиты URSA являются как теплоизоляционным, так и несущим элементом. С помощью строительного клея плиты приклеиваются к наружной поверхности стены и крепятся к ней механическими фиксаторами. Затем на плиты наносится армирующий слой строительного клея, по которому укладывается стеклянная сетка. На нее вновь накладывается слой строительного клея, по которому пойдет заключительный слой фасадной штукатурки.

Теплоизоляция стен снаружи может быть произведена с помощью особо жестких плит URSA, закрепляемых на деревянном или металлическом каркасе наружной стены механическими фиксаторами. Затем, с определенным расчетами зазором выполняется облицовка, например, кирпичная стена. Эта конструкция позволяет создавать вентилируемое пространство между облицовкой и теплоизоляционными плитами .

Теплоизоляция внутренних стен в полости с воздушным зазором может быть произведена путем устройства «трехслойной стены». При этом вначале возводится стена из обычного красного кирпича. Теплоизоляционные плиты URSA с гидрофобизированной обработкой насаживаются на проволочные анкеры, предварительно заложенные в кладку несущей стены, и прижимаются шайбами.

С определенным теплотехническим расчетом зазором далее сооружается стена, выходящая, к примеру, в подъезд, лоджию или террасу. Ее рекомендуется выполнять из облицовочного кирпича с расшивкой, чтобы не затрачивать дополнительные средства и усилия на обработку наружных поверхностей. При обработке желательно обращать внимание на хорошую стыковку плит, тогда можно избежать мостиков холода . При толщине изоляции URSA 80 мм рекомендуется двухслойная укладка в перевязку со смещением. Изоляционные плиты должны быть продавлены без повреждений через проволочные анкеры, выступающие горизонтально из несущей верхней стены.

Крепления к минераловатному утеплителю URSA немецкого концерна «PFLEIDERER»

Для примера рассмотрим наиболее приемлимый по стоимости вариант с оштукатуриванием фасадного слоя утеплителя. Этот способ прошел полную сертификацию на территории Российской федерации, в частности – система «Изотех» ТУ 5762-001-36736917-98. Это система с гибкими крепежными элементами и минераловатными плитами типа Rockwooll (Роквул), производимыми в Нижнем Новгороде.

Следует отметить, что минеральная вата Rockwool, являясь волокнистым материалом, способна уменьшить влияние одного из наиболее раздражающих факторов в нашем ежедневном окружении — шума.Как известно, намокший изоляционный материал в значительной степени теряет свои тепло- и звукоизоляционные свойства.

Импрегнированная минеральная вата Rockwool — водоотталкивающий материал, хотя и имеет пористую структуру. Только в сильный дождь могут намокнуть несколько миллиметров верхнего слоя материала, влага из воздуха практически не проникает во внутрь.

В отличие от изоляции Rockwool, плиты URSA ПЛ, ПС, ПТ (по рекламным проспектам также обладающие эффективными водоотталкивающими свойствами) не рекомендуется оставлять незащищенными на время длительных перерывов в работе, следует закрывать незаконченную кирпичную кладку от дождя, поскольку влага, попадающая между передней и задней оболочками кладки, высыхает очень медленно и наносит непоправимый ущерб структуре плит.

Констуктивная схема системы ИЗОТЕХ:

1.Грунтовочная эмульсия ИЗОТЕХ ГЭ.
2 Клеевой раствор ИЗОТЕХ КР.
3. Дюбель полимерный.
4 Теплоизоляционные панели.
5Армирующая сетка из стекло-волокна.
6.Грунтовочный слой под штукатурку ИЗОТЕХ ГР.
7. Декоративный штукатурный слой ИЗОТЕХ ДС
.



Теплотехнический расчет ограждающих конструкций

Исходные данные для теплотехнического расчета примем по приложению 1 СНиП 2.01.01-82 «Схематическая карта климатического районирования территории СССР для строительства». Строительно-климатическая зона Ижевска – Iв, зона влажности – 3 (сухая). Учитывая влажностный режим помещений и зону влажности территории, определяем условия эксплуатации ограждающих конструкций – группа А.

Необходимые для расчетов климатические характеристики для г.Ижевска из СНиП 2.01.01-82 представлены ниже в табличной форме.

Температура и упругость водяного пара наружного воздуха

Ижевск Средняя по месяцам
I II III IV V VI VII VIII IX X XI XII
-14,2 -13,5 -7,3 2,8 11,1 16,8 18,7 16,5 10 2,3 -5,6 -12,3
Среднегодовая 2,1
Абсолютная минимальная -46,0
Абсолютная максимальная 37,0
Средняя максимальная наиболее жаркого месяца 24,3
Наиболее холодных суток обеспеченностью 0,92 -38,0
Наиболее холодной пятидневки обеспеченностью 0,92 -34,0
<8 ° С, суток.
Средняя температура
223
-6,0
Продолжительность периода со средней суточной температурой <10 ° С, суток.
Средняя температура
240
-5,0
Средняя темпрература наиболее холодного периода года -19,0
Продолжительность периода со среднесуточной температурой £ 0 ° С суток. 164
Упругость водяного пара наружного воздуха по месяцам, гПа I II III IV V VI VII VIII IX X XI XII
2,2 2,2 3 5,8 8,1 11,7 14,4 13,2 9,5 6,2 3,9 2,6
Средняя месячная относительная влажность воздуха, %

Наиболее холодного месяца

85
Наиболее жаркого месяца 53
Количество осадков, мм За год 595
Жидких и смешанных за год
Суточный максимум 61

При технических расчетах утепления не рекомендуется определять общее приведенное сопротивление теплопередаче наружного ограждения как сумму приведенных сопротивлений теплопередаче существующей стены и дополнительно устраиваемого утепления. Это обусловлено тем, что влияние существующих теплопроводных включений существенно изменяется в сравнении с вычисленным первоначально.

Приведенное сопротивление теплопередаче ограждающих конструкций R (0) следует принимать в соответствии с заданием на проектирование, но не менее требуемых значений, определяемых исходя из санитарно-гигиенических и комфортных условий, принятых на втором этапе энергосбережения. Определим показатель ГСОП (градусо-сутки отопительного периода):
ГСОП = (t в – t от.пер.)
´ z от.пер. ,

где t в
– расчетная температура внутреннего воздуха, ° С, принимаемая по СНиП 2.08.01-89;


t от.пер, z от.пер
. – средняя температура, ° С и — продолжительность периода со средней суточной температурой воздуха ниже или равной 8 ° С суток.

Отсюда ГСОП = (20-(-6)) ´ 223 = 5798.

Фрагмент таблицы 1б*(К) СНиП II-3-79*

Здания и
помещения
ГСОП* Приведенное сопротивление теплопередаче
ограждающих конструкций, не менее R (o)тр,
м 2 ´° С/Вт
стен чердачных перекрытий окон и балконных дверей
Жилые , лечебно-
профилактические и детские учреждения, школы, интернаты
2000
4000
6000
8000
2,1
2,8
3,5
4,2
2,8
3,7
4,6
5,5
0,3
0,45
0,6
0,7
* Промежуточные значения определяются интерполяцией.

Методом интерполяции определяем минимальное значение R (o)тр ,: для стен- 3,44 м 2 ´° С /Вт; для чердачных перекрытий- 4,53 м 2 ´° С /Вт ; для окон и балконных дверей- 0,58 м 2 ´° С
/Вт.

Расчет утеплителя и теплотехнических характеристик кирпичной стены производится на основании предварительногорасчета и обоснования принятой толщины утеплителя.

Теплотехнические характеристики материалов стены

№ слоя
(считая изнутри)
№ позиции по прил.3
СНиП II-3-79*
Материал Толщина, d
м
Плотность r ,
кг/м 3
Теплоемкость с,
кДж/(кг°С)
Теплопроводность
l , Вт /(м°С)
Теплоусвоение s,
Вт/ (м^С)
Паропроницаемость
m мг/(мчПа)
Ограждение – наружная кирпичная стена
1 71

Раствор цементно-песчаный

0.02 1800 0,84 0,76 9,60 0,09
2 87 0,64 1800 0,88 0,76 9,77 0,11
3 133 Марка П175 х /span 175 0,84 0,043 1,02 0,54
4 71 0,004 1500 0,84 0,76 9,60 0,09

Где х – неизвестная толщина слоя утеплителя.

Определим требуемое сопротивление теплопередаче ограждающих конструкций: R o тр, установив:

n — коэффициент, принимаемый в зависимости от положения наружной

Поверхности ограждающих конструкций по отношению к наружному воздуху;

t в — расчетная температура внутреннего воздуха, °С, принимаемая согласно ГОСТ 12.1.005-88 и нормам проектирования жилых зданий;

t н — расчетная зимняя температура наружного воздуха, °С, равная средней температуре наиболее холодной пятидневки обеспеченностью 0,92;

D t н — нормативный температурный перепад между температурой внутреннего воздуха

И температурой внутренней поверхности ограждающей конструкции;

a в

Отсюда R o тр = = 1,552

Так как условием выбора R o тр является максимальное значение из полученного по расчету или табличного значения, окончательно принимаем табличное значение R o тр = 3,44 .

Термическое сопротивление ограждающей конструкции с последовательно расположенными однородными слоями следует определять как сумму термических сопротивлений отдельных слоев. Для определения толщины утепляющего слоя воспользуемся формулой:

R o тр ≤ + S + ,

где a в — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций;

d i — толщина слоя, м ;

l i — расчетный коэффициент теплопроводности материала слоя, Вт/(м·°С);

a н — коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающей конструкции, Вт/(м 2 ´ °С).

Безусловно, значение х должно быть минимальным для экономии средств, поэтому необходимое
значение величины утепляющего слоя можно выразить из предыдущих условий, получая в результате х ³ 0,102 м.

Принимаем толщину минераловатной плиты равной 100мм , что кратно толщине выпускаемых изделий марки П175 (50, 100 мм ).

Определяем фактическое значение R o ф = 3,38 , это на 1,7% меньше R o тр = 3,44 , т.е. укладывается в допустимое отрицательное отклонение 5% .

Приведенный выше расчет является стандартным и подробно описан в СНиП II-3-79*. Подобную методику использовали и авторы ижевской программы по реконструкции зданий серии 1-335. При утеплении панельного здания, имеющего меньшее начальное R o , ими был принят утеплитель из пеностекла производства АО «Гомельстекло» по ТУ 21 БССР 290-87 с толщиной d = 200 мм и коэффициентом теплопроводности l = 0,085. Полученное при этом т дополнительное сопротивление теплопередаче выражается следующим образом:

R доп = = = 2,35 , что соответствует сопротивлению теплопередачи утепляющего слоя толщиной 100мм из минераловатного утеплителя R=2,33 с точностью до (-0,86%). С учетом более высоких начальных характеристик кирпичной кладки толщиной 640 мм в сравнении с стеновой панелью здания серии 1-335 можно сделать вывод, что полученное нами общее сопротивление теплопередачи выше и соответствует требованиям СниП.

В многочисленных рекомендациях ЦНИИП ЖИЛИЩЕ приводится более сложный вариант расчета с разбивкой стены на участки с разными термическими сопротивлениями, например, в местах опирания плит перекрытия, надоконных перемычек. Для здания серии 1-447 вводится до 17 участков на расчетной площади стены, ограниченной высотой этажа и расстоянием повторяемости элементов фасада, влияющих на условия теплопередачи (6м). В СНиП II-3-79* и других рекомендациях подобные данные не приводятся

В расчеты для каждого участка при этом вводится коэффициент тепловой неоднородности, который учитывает непараллельные вектору теплового потока потери стен в местах устройства оконных и дверных проемов, а также влияние на потери соседних участков с меньшим термическим сопротивлением. По этим расчетам для нашей зоны пришлось бы использовать аналогичный минераловатный утеплитель толщиной не менее 120мм. Это означает, что с учетом кратности выпускаемым размерам минераловатных плит с необходимой средней плотностью r > 145 кг/м 3 (100, 50мм), согласно ТУ 5762-001-36736917-98, потребуется введение утепляющего слоя, состоящего из 2-х плит толщиной 100 и 50 мм. Это не только удвоит стоимость тепловой санации, но и усложнит технологию.

Компенсировать возможное минимальное несоответствие толщины теплоизоляции при сложной схеме расчета можно незначительными внутренними мерами сокращения тепловых потерь. К ним относят: рациональный выбор элементов оконного заполнения, качественное уплотнение оконных и дверных проемов, устройство отражающих экранов с нанесенным теплоотражающим слоем за радиатором отопления и т.п. Возведение отапливаемых площадей в мансардном этаже также не влечет за собой увеличения общего (существовавшего до реконструкции) энергопотребления, поскольку, по сведениям производителей и организаций, выполняющих утепление фасадов, затраты на отопление даже снижаются от 1,8 до 2,5 раз.

Расчет тепловой инерции наружной стены начинают с определения тепловой инерции D ограждающей конструкции:

D = R 1 ´ S 1 + R 2 ´ S 2 + … +R n ´ S n ,

где R – сопротивление теплопередаче i-го слоя стены

S — теплоусвоение Вт / (м ´° С),

отсюда D
= 0,026 ´ 9,60 + 0,842 ´ 9,77 + 2,32 ´ 1,02 + 0,007 ´ 9,60 = 10,91.

Расчет теплоаккумулирующей способности стены Q проводят с целью исключения слишком быстрого и чрезмерного нагревания охлаждения внутренних помещений.

Различают внутреннюю теплоаккумулирующую способность Q в (при перепаде температур изнутри наружу — зимой) и наружную Q н (при перепаде температур снаружи внутрь — летом). Внутренняя теплоаккумулирующая способность характеризует поведение стены при колебаниях температуры на её внутренней стороне (отключение отопления), наружная — на наружной (солнечная радиация). Микроклимат помещений тем лучше, чем больше теплоаккумулирующая способность ограждений. Большая внутренняя теплоаккумулирующая способность означает следующее: при выключении отопления (например, ночью или при аварии) температура внутренней поверхности конструкции снижается медленно и долгое время она отдает теплоту охлажденному воздуху помещения. В этом состоит преимущество конструкции с большим Q в. Недостатком является то, что при включении отопления такая конструкция долго прогревается. Внутренняя теплоаккумулирующая способность возрастает с увеличением плотности материала ограждения. Легкие теплоизоляционные слои конструкции следует размещать ближе к наружной поверхности. Размещение теплоизоляции изнутри приводит к снижению Q в. Ограждения с малым Q в быстро прогреваются и быстро остывают, поэтому такие конструкции целесообразно применять в помещениях с кратковременным пребыванием людей. Общая теплоаккумулирующую способность Q = Q в + Q н. При оценке альтернативных вариантов ограждений предпочтение следует отдавать конструкциям с бо льшей Q в.

Вычисляет плотность теплового потока вычисляем

q = = 15,98 .

Температура внутренней поверхности:

t в = t в – , t в = 20 – = 18,16 ° С.

Температура наружной поверхности:

t н = t н + , t н = -34 + = -33,31 ° С.

Температура между слоем i и слоем i+1 (слои – изнутри наружу):

t i+1 = t i — q ´ R i ,

где R i – сопротивление теплопередаче i – го слоя, R i = .

Внутренняя теплоаккумулирующая способность выразится:


Q в =
S с i ´r i ´d i ´ ( t iср — t н),

где с i – теплоемкость i-го слоя, кДж/(кг ´ °С)

r i – плотность слоя по таблице 1, кг/м 3

d i – толщина слоя, м

t i ср — средняя температура слоя, ° С

t н – расчетная температура наружного воздуха, ° С

Q в = 0,84 ´ 1800 ´ 0,02 ´ (17,95-(-34)) + 0,88 ´ 1800 ´ 0,64 ´ (11,01-(-34))

0,84 ´ 175 м

Коэффициент теплопроводности
l , Температура внутренней поверхности ° С Температура наружной поверхности ° С Температурный перепад
° С Средняя температура в слое
t i ср
° С
1. Раствор цементно-песчаный 0,020 0,76 18,16 17,74 0,42 17,95 2. Кирпичная кладка из сплошного силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе 0,640 0,76 17,74 4,28 13,46 11,01 3. Минераловатная плита «Роквул» на синтетическом связующем.
Марка П-175 0,100 0,043 4,28 -32,88 37,16 -14,30 4. Раствор цементно-известковый на основе гидрофобных акриловых составов различных оттенков 0,004 0,76 -32,88 -33,31 0,43 -32,67

По результатам расчета в координатах t- d строится температурное поле стены в интервале температур t н -t в.


Вертикальный масштаб 1мм = 1 ° С

Горизонтальный иасштаб, мм 1/10

Расчет тепловой устойчивости стены согласно СНиП II-3-79* выполняется для районов со среднемесячной температурой июля 21 ° С и выше. Для Ижевска этот расчет будет излишним, поскольку средняя температура июля составляет 18,7 ° С.

Проверку поверхности наружной стены на конденсацию влаги выполняют при условии t в < t р, т.е. в случае, когда температура поверхности ниже температуры точки росы, или когда упругость водяного пара, вычисленная по температуре поверхности стены, больше максимальной упругости водяного пара, определенной по температуре внутреннего воздуха
(е в >Е t ). В этих случаях на поверхности стены возможно выпадение влаги из воздуха.

Расчетная температура воздуха в помещении t в по СНиП 2.08.01-89 20 ° С
носительная влажность
воздуха помещения
55%
Температура внутренней поверхности ограждающей конструкции t в
18,16 ° С
Температура точки росы t р,
определенная по id диаграмме
9,5 ° С
Возможность конденсации влаги на поверхности стены нет Температура точки росы t р определяется по
i-d диаграмме.

Проверка возможности выпадения конденсата в наружных углах комнат затрудняется тем, что для нее необходимо знать температуру внутренней поверхности в углах. При использовании многослойных конструкций ограждения точное решение этой задачи весьма сложное. Но при достаточно высокой температуре поверхности основной стены, маловероятно ее снижение в углах ниже точки росы, то есть с 18,16 до 9,5 ° С.

Вследствие разности парциальных давлений (упругости водяного пара) в воздушных средах, разделяемых ограждением, возникает диффузионный поток водяных паров интенсивностью — g из среды с большим парциальным давлением в среду с меньшим давлением (для зимних условий: изнутри — наружу ). В сечении, где теплый воздух внезапно охлаждается на контакте с холодной поверхностью до температуры ≤t р происходит конденсация влаги. Определение зоны возможной конденсации влаги в толще ограждения выполняется в случае, если не выполняются варианты, указанные в п. 6.4 СНиП II-3-79*:

а) Однородных (однослойных) наружных стен помещений с сухим или нормальным режимом;

б) Двухслойных наружных стен помещений с сухим и нормальным режимом, если внутренний слой стены имеет сопротивление паропроницанию более 1,6 Па ´ м 2 ´ ч /мг

Сопротивление паропроницанию определяется по формуле:

R п = R пв + S R пi

где R пв – сопротивление паропроницанию пограничного слоя;

R пi – сопротивление слоев, определяемое согласно п. 6.3 СНиП II-3-79*: R пi = ,


Где d i , m i — соответственно толщина и нормативное сопротивление паропроницанию i-го слоя.

Отсюда

R п = 0,0233 + + = 6,06 .

Полученное значение в 3,8 раза превышает необходимый минимум, что уже гарантирует от конденсации влаги в толще стены .



Для жилых домов массовых серий в бывшей ГДР разработаны типовые детали и узлы как для скатных кровель, так и для зданий с бесчерачным покрытием, с цокольной частью различной высоты. После замены оконных заполнений и штукатурке фасада, здания выглядят значительно лучше.

Конструкции наружных стен гражданских и промышленных зданий

Конструкции наружных стен гражданских и промышленных зданий классифицируются по следующим признакам:

1) по статической функции:

а) несущие;

б) самонесущие;

в) ненесущие (навесные).

На рис. 3.19 показан общий вид данных видов наружных стен.

Несущие наружные стены воспринимают и передают на фундаменты собственный вес и нагрузки от смежных конструкций здания: перекрытий, перегородок, крыш и др. (одновременно выполняют несущую и ограждающую функции).

Самонесущие наружные стены воспринимают вертикальную нагрузку только от собственного веса (включая нагрузку от балконов, эркеров, парапетов и др. элементов стены) и передают их на фундаменты через промежуточные несущие конструкции – фундаментные балки, ростверки или цокольные панели (одновременно выполняют несущую и ограждающую функции).

Ненесущие (навесные) наружные стены поэтажно (или через несколько этажей) опираются на смежные несущие конструкции здания – перекрытия, каркас или стены. Таким образом, навесные стены выполняют только ограждающую функцию.

Рис. 3.19. Виды наружных стен по статической функции:
а – несущие; б – самонесущие; в – ненесущие (навесные): 1 – перекрытие здания; 2 – колонна каркаса; 3 – фундамент

Несущие и ненесущие наружные стены применяются в зданиях любой этажности. Самонесущие стены опираются на собственный фундамент, поэтому их высота ограничивается из-за возможности взаимных деформаций наружных стен и внутренних конструкций здания. Чем выше здание, тем больше разница в вертикальных деформациях, поэтому, например, в панельных домах допускается применение самонесущих стен при высоте здания не более 5 этажей.

Устойчивость самонесущих наружных стен обеспечивается гибкими связями с внутренними конструкциями здания.

2) По материалу:

а) каменные стены возводятся из кирпича (глиняного или силикатного) или камней (бетонных или природных) и применяются в зданиях любой этажности. Каменные блоки выполняют из естественного камня (известняк, туф и др.) или искусственного (бетон, легкий бетон).

б) Бетонные стены выполняют из тяжелого бетона класса В15 и выше плотностью 1600 ÷ 2000 кг/м 3 (несущие части стен) или легкого бетона классов В5 ÷ В15 плотностью 1200 ÷ 1600 кг/м 3 (для теплоизоляционных частей стен).

Для изготовления легких бетонов используются искусственные пористые заполнители (керамзит, перлит, шунгизит, аглопорит и т. п.) или естественные легкие заполнители (щебень из пемзы, шлака, туфа).

При возведении ненесущих наружных стен также используется ячеистый бетон (пенобетон, газобетон и т. п.) классов В2 ÷ В5 плотностью 600 ÷ 1600 кг/м 3 . Бетонные стены применяются в зданиях любой этажности.

в) Деревянные стены применяются в малоэтажных зданиях. Для их возведения используются сосновые бревна диаметром 180 ÷ 240 мм или брусья сечением 150х150 мм или 180х180 мм, а также дощатые или клеефанерные щиты и панели толщиной 150 ÷ 200 мм.

г) стены из небетонных материалов в основном применяются при возведении промышленных зданий или малоэтажных гражданских зданий. Конструктивно они состоят из наружной и внутренней обшивки из листового материала (сталь, алюминиевые сплавы, пластик, асбестоцемент и др.) и утеплителя (сэндвич-панели). Стены данного типа проектируют несущими только для одноэтажных зданий, а при большей этажности – только как ненесущие.

3) по конструктивному решению:

а) однослойные;

б) двухслойные;

в) трехслойные.

Количество слоев наружных стен здания определяется по результатам теплотехнического расчета. Для соответствия современным нормам по сопротивлению теплопередаче в большинстве регионов России необходимо проектировать трехслойные конструкции наружных стен с эффективным утеплителем.

4) по технологии возведения:

а) по традиционной технологии возводятся каменные стены ручной кладки. При этом кирпичи или камни укладываются рядами по слою цементно-песчаного раствора. Прочность каменных стен обеспечивается прочностью камня и раствора, а также взаимной перевязкой вертикальных швов. Для дополнительного повышения несущей способности каменной кладки (например, для узких простенков) применяется горизонтальное армирование сварными сетками через 2 ÷ 5 рядов.

Требуемую толщину каменных стен определяют по теплотехническому расчету и увязывают со стандартными размерами кирпичей или камней. Применяются кирпичные стены толщиной в 1; 1,5; 2; 2,5 и 3 кирпича (250, 380, 510, 640 и 770 мм соответственно). Стены из бетонных или природных камней при кладке в 1 и 1,5 камня имеют толщину 390 и 490 мм соответственно.

На рис. 3.20 показано несколько типов сплошных кладок из кирпича и каменных блоков. На рис. 3.21 показана конструкция трехслойной кирпичной стены толщиной 510 мм (для климатического района Нижегородской области).

Рис. 3.20. Типы сплошных каменных кладок: а – шестирядная кирпичная кладка; б – двух-рядная кирпичная кладка; в – кладка из керамических камней; г и д – кладки из бетонных или природных камней; е – кладка из камней ячеистого бетона с наружной облицовкой кирпичом

На внутренний слой трехслойной каменной стены опираются перекрытия и несущие конструкции крыши. Наружный и внутренний слои кирпичной кладки соединяются между собой арматурными сетками с шагом по вертикали не более 600 мм. Толщина внутреннего слоя принимается 250 мм для зданий высотой 1 ÷ 4 этажа, 380 мм – для зданий высотой 5 ÷ 14 этажей и 510 мм – для зданий высотой более 14 этажей.

Рис. 3.21. Каменная стена трехслойной конструкции:

1 – внутренний несущий слой;

2 – слой теплоизоляции;

3 – воз-душный зазор;

4 – наружный самонесущий (облицовочный) слой

б) полносборная технология используется при возведении крупнопанельных и объемно-блочных зданий. При этом монтаж отдельных элементов здания производится подъемными кранами.

Наружные стены крупнопанельных зданий выполняются из бетонных или кирпичных панелей. Толщина панелей – 300, 350, 400 мм. На рис. 3.22 показаны основные виды бетонных панелей, применяемых в гражданском строительстве.

Рис. 3.22. Бетонные панели наружных стен: а – однослойная; б – двухслойная; в – трехслойная:

1 – конструктивно-теплоизоляционный слой;

2 – защитно-отделочный слой;

3 – несущий слой;

4 – теплоизоляционный слой

Объемно-блочные здания – это здания повышенной заводской готовности, которые монтируются из отдельных блоков-комнат заводского изготовления. Наружные стены таких объемных блоков могут быть одно-, двух- и трехслойными.

в) монолитная и сборно-монолитная технологии возведения позволяют возводить одно-, двух- и трехслойные монолитные стены из бетона.

Рис. 3.23. Сборно-монолитные наружные стены (в плане):
а – двухслойная с наружным слоем теплоизоляции;

б – то же, с внутренним слоем теплоизоляции;

в – трехслойная с наружным слоем теплоизоляции

При использовании данной технологии сначала устанавливается опалубка (форма), в которую заливается бетонная смесь. Однослойные стены выполняются из легких бетонов толщиной 300 ÷ 500 мм.

Многослойные стены выполняются сборно-монолитными с использованием наружного или внутреннего слоя каменных блоков из ячеистого бетона. (см. рис. 3.23).

5) по расположению оконных проемов:

На рис. 3.24 показаны различные варианты расположения оконных проемов в наружных стенах зданий. Варианты а , б , в , г используются при проектировании жилых и общественных зданий, вариант д – при проектировании промышленных и общественных зданий, вариант е – для общественных зданий.

Из рассмотрения данных вариантов можно видеть, что функциональное назначение здания (жилое, общественное или промышленное) определяет конструктивное решение его наружных стен и внешний вид в целом.

Одно из основных требований, предъявляемое к наружным стенам – это необходимая огнестойкость. По требованиям противопожарных норм несущие наружные стены должны быть выполнены из несгораемых материалов с пределом огнестойкости не менее 2 часов (камень, бетон). Применение трудносгораемых несущих стен (например, деревянных оштукатуренных) с пределом огнестойкости не менее 0,5 часа допускается только в одно-, двухэтажных домах.


Рис. 3.24. Расположение оконных проемов в наружных стенах зданий:
а – стена без проемов;

б – стена с небольшим количеством проемов;

в – панельная стена с проемами;

г – несущая стена с усиленными простенками;

д – стена с навесными панелями;
е – полностью остекленная стена (витраж)

Высокие требования к огнестойкости несущих стен вызваны их основной ролью в сохранности здания, так как разрушение несущих стен при пожаре вызывает обрушение всех опирающихся на них конструкций и здания в целом.

Ненесущие наружные стены проектируют несгораемыми или трудносгораемыми с меньшими пределами огнестойкости (от 0,25 до 0,5 часа), так как разрушение данных конструкций при пожаре может вызвать только локальные повреждения здания.

Пути дальнейшего повышения энергоэффективности зданий

Снижение энергопотребления в строительном секторе - проблема комплексная; тепловая защита отапливаемых зданий и ее контроль являются лишь частью, хотя и важнейшей, общей проблемы. Дальнейшее снижение нормируемых удельных расходов тепловой энергии на отопление жилых и общественных зданий за счет повышения уровня тепловой защиты на ближайшее десятилетие, по-видимому, нецелесообразно. Вероятно, это снижение будет происходить за счет ввода более энергоэффективных систем воздухообмена (режим регулирования воздухообмена по потребности, рекуперации теплоты вытяжного воздуха и пр.) и за счет учета управления режимами внутреннего микроклимата, например, в ночные часы. В связи с этим потребуется доработка алгоритма расчета расхода энергии в общественных зданиях.

Другая часть общей, пока не решенной проблемы - отыскание уровня эффективной тепловой защиты для зданий с системами охлаждения внутреннего воздуха в теплый период года. В этом случае уровень тепловой защиты по условиям энергосбережения может быть выше, чем при расчетах на отопление зданий.

Это означает, что для северных и центральных регионов страны уровень тепловой защиты может устанавливаться из условий энергосбережения при отоплении, а для южных регионов - из условия энергосбережения при охлаждении. По-видимому, целесообразно объединение нормирования расхода горячей воды, газа, электроэнергии на освещение и другие нужды, а также установление единой нормы по удельному расходу энергии здания.

В зависимости от типа нагрузок наружные стены делятся на:

- несущие стены - воспринимающие нагрузки от собственного веса стен по всей высоте здания и ветра, а также от других конструктивных элементов здания (перекрытий, кровли, оборудования, и т.д.);

- самонесущие стены - воспринимающие нагрузки от собственного веса стен по всей высоте здания и ветра;

- ненесущие (в том числе навесные) стены - воспринимающие нагрузки только от собственного веса и ветра в пределах одного этажа и передающие их на внутренние стены и перекрытия здания (типичный пример - стены-заполнители при каркасном домостроении).

Требования к различным типам стен существенно отличаются. В первых двух случаях очень важны прочностные характеристики, т.к. от них во многом зависит устойчивость всего здания. Поэтому материалы, используемые для их возведения, подлежат особому контролю.

Конструктивная система представляет собой взаимосвязанную совокупность вертикальных (стены) и горизонтальных (перекрытия) несущих конструкций здания, которые совместно обеспечивают его прочность, жесткость и устойчивость.



На сегодняшний день наиболее применяемыми конструктивными системами являются каркасная и стеновая (бескаркасная) системы. Следует отметить, что в современных условиях часто функциональные особенности здания и экономические предпосылки приводят к необходимости сочетания обеих конструктивных систем. Поэтому сегодня все большую актуальность приобретает устройство комбинированных систем.

Для бескаркасной конструктивной системы используют следующие стеновые материалы:

Деревянные брусья и бревна;

Керамические и силикатные кирпичи;

Различные блоки (бетонные, керамические, силикатные;

Железобетонные несущие панели 9панельное домостроение).

До недавнего времени бескаркасная система являлась основной в массовом жилищном строительстве домов различной этажности. Но в условиях сегодняшнего рынка, когда сокращение материалоемкости стеновых конструкций при одновременном обеспечении необходимых показателей теплозащиты является одним из самых актуальных вопросов строительства, все большее распространение получает каркасная система возведения зданий.

Каркасные конструкции обладают высокой несущей способностью, малым весом, что позволяет возводить здания разного назначения и различной этажности с применением в качестве ограждающих конструкций широкого спектра материалов: более легких, менее прочных, но в то же время обеспечивающих основные требования по теплозащите, звуко- и шумоизоляции, огнестойкости. Это могут быть штучные материалы или панели (металлические типа сэндвич либо железобетонные). Наружные стены в каркасных зданиях не являются несущими. Поэтому прочностные характеристики стенового заполнения не так важны, как в зданиях бескаркасного типа.

Наружные стены многоэтажных каркасных зданий посредством закладных деталей крепятся к несущим элементам каркаса или опираются на кромки дисков перекрытий. Крепление может осуществляться и посредством специальных кронштейнов, закрепляемых на каркасе.

С точки зрения архитектурной планировки и назначения здания, наиболее перспективным является вариант каркаса со свободной планировкой - перекрытия на несущих колоннах. Здания такого типа позволяют отказаться от типовой планировки квартир, в то время как в зданиях с поперечными или продольными несущими стенами это сделать практически невозможно.

Хорошо зарекомендовали себя каркасные дома и в сейсмически опасных районах.
Для возведения каркаса используются металл, дерево, железобетон, причем железобетонный каркас может быть как монолитный, так и сборный. На сегодняшний день наиболее часто используется жесткий монолитный каркас с заполнением эффективными стеновыми материалами.

Все большее применение находят легкие каркасные металлоконструкции. Возведение здания осуществляется из отдельных конструктивных элементов на строительной площадке; либо из модулей, монтаж которых производится на стройплощадке.

Данная технология имеет несколько основных достоинств. Во-первых, - это быстрое возведение сооружения (короткий срок строительства). Во-вторых, - возможность формирования больших пролетов. И наконец, - легкость конструкции, уменьшающая нагрузку на фундамент. Это позволяет, в частности, устраивать мансардные этажи без усиления фундамента.

Особое место среди металлических каркасных систем занимают системы из термоэлементов (стальных профилей с перфорированными стенками, прерывающими мостики холода).

Наряду с железобетонными и металлическими каркасами давно и хорошо известны деревянные каркасные дома, в которых несущим элементом является деревянный каркас из цельной или клееной древесины. По сравнению с рублеными деревянные каркасные конструкции отличаются большей экономичностью (меньше расход древесины) и минимальной подверженностью усадке.

Несколько особняком стоит еще один способ современного возведения стеновых конструкций - технология с применением несъемных опалубок. Специфика рассматриваемых систем заключается в том, что сами элементы несъемной опалубки не являются несущими. элементами конструкции. В процессе строительства сооружения, путем установки арматуры и заливки бетоном, создается жесткий железобетонный каркас, удовлетворяющий требованиям по прочности и устойчивости.



© 2024 Идеи дизайна квартир и домов