Вконтакте Facebook Twitter Лента RSS

Размер пустотных плит перекрытия: конструкционные особенности, характеристики размера и веса, марки, расчёт максимально допустимой нагрузки. Оборудование для производства плит перекрытия

Введение .

Производство сборного железобетона требует всемерной интенсификации технологических процессов, в частности сокращения длительности и энергоемк о сти тепловой обработки.

Сроки твердения бетона в конструкциях и изделиях, как известно, при пр и менении тепловой обработки существенно сокращаются по сравнению с тверден и ем в обычных температурных условиях, однако намного превышают длительность остальных операций по изготовлению железобетонных изделий. В общем цикле производства тепловая обработка составляет по времени 80 … 85 %, а ее сто и мость составляет значительную часть от общей стоимости изделий и констру к ций. Тепловая обработка определяет к тому же и качество структуры цементного камня в бетоне.

Свыше 90 % сборного железобетона подвергаются пропариванию. На те р мообработку 1 м 3 сборных железобетонных изделий затрачивается от 120 кг пара.

Продолжительность и энергоемкость тепловой обработки сборного жел е зобетона определяются не только принятым способом и режимом интенсификации процесса твердения бетона, но и рядом других факторов – минералогическим с о ставом, активностью и расходом цемента, составом бетона, видом и количеством вводимых в бетонную смесь химических веществ.

В настоящем курсовом проекте рассмотрен процесс производства желез о бетонных плит перекрытия, тепловая обработка которых производится в полиг о нальной камере

Назначение режимов тепловой обработки произведено на основании норм а тивной литературы с учетом вида и класса бетона, активности цемента, толщ и ны изделия, способа подъема теплоты и др. факторов. Для проверки режима прои з веден расчет температур изделия на протяжении всего процесса тепловой обр а ботки.

Теплотехнический расчет установки основан на физических процессах и представляет собой расчет теплового баланса. Баланс состоит из расходной и приходной частей, и наиболее полно отражает происходящие в установке явления теплоо б мена.

На основании всех расчетов спроектированы тепловые сети и технолог и ческие линии по производству изделий с учетом заданных условий производства и проектной мощности. Описаны мероприятия по технике безопасности, охране тр у да, прот и вопожарной технике.


  1. Краткое описание технологического проце с са.

Для изготовления железобетонных плит перекрытия применяются форма к о торая подается на вибрационный стол.

Технология изготовления железобетонных плит включает в себя следующие стадии:

  • смазка форм
  • укладка арматурного каркаса и сборка формы
  • подача бетонной смеси из бетоноукладчика в фо р му
  • уплотнение бетонной смеси.
  • транспортирование формы с помощью конвейера и подъемник – спускателя в полигональную камеру
  • тепловая обработка изделия по заданному режиму
  • подача изделия на пост ра с палубки
  • извлечение плиты из формы
  • освидетельствование и приемка ОТК
  • передача изделия на склад

Свежеотформованную плиту подвергают тепловой обработке путем подачи пара в пропарочную камеру. В целях предотвращения размыва бетона струей пара, поступающего под давлением, на подводящие трубы насаживают перфорированные насадки. При таком способе тепловой обработки не происходит разуплотнения б е тона.


  1. Характеристика изделия и формы.

В данном курсовом проекте в качестве строительного изделия принята плита перекрытия 1200-60-200. Такие плиты изготовляются в соответствии с ГОСТ 26434-85 «Плиты перекрытия железобетонные», и согласно стандарта имеют об о значение 2П60,12.

Плиты должны обладать следующими характеристик а ми:

  • должны быть прочными и трещинастойкими и при испытании их нагруж е нием выдерживать ко н трольные нагрузки
  • материалы применяемые для приготовления бетона, должны удовлетв о рять требованиям действующих стандартов и технических условий на эти материалы.
  • должны удовлетворять требованиям ГОСТ 13015.0:
  • величина отпускной прочности бетона панелей в процентах от марки б е тона по прочности на сжатие должна быть равной 70%
  • Плиты следует и з готовлять из тяжелого бетона по ГОСТ 26434 класс по прочности на сж а тие не ниже В15

Для подачи изделия в камеру применяется форма вагонетка СМЖ – 151

Предельная дальность хода 120м.

Скорость передвижения 32 м/мин

Ширина колеи 820 мм

Габариты 7,49 – 2,5 – 1,4 м

Масса 2,5т

Типоразмер плиты

Координационные размеры плиты, мм

Масса плиты (справочная), т

Длина

Ширина

2П60.12

6000

1200

2П60.24

2400

2П60.30

3000

2П60.36

3600


  1. Состав бетонной смеси.

Согласно ГОСТ 26434-85 «Перекрытия железобетонные» плиты следует и з готовлять из тяжелого бетона по прочности на сжатие В15.

Для обеспечения данного требования применяется бетонная смесь БСГТ П1 В22,5 приготовленная из следующих комп о нентов (на 1 м 3 смеси):

  • цемент марки М500 - 353кг
  • песок  п =2630 кг/м3

фракции: 2,5 - 5 10%

1,25 - 2,5 25%

0,63 - 1,25 25%

0,315 - 0,63 20%

0,14 - 0,315 15%

Менее 0,14 5%

710 кг

  • щебень гранитный r щ =2670 кг/м 3

фракции: 10 - 20 70%

20 - 30 30%

1157 кг

  • вода - 180 кг

Плотность бетонной смеси r бс =2400 кг/м 3

Для производства одной плиты требуется на 1 м 3 бетона и 25 кг стали для каркаса.


  1. Выбор и обоснование режима тепловой обр а ботки.

Для производства изделия назначим следующий те п ловой режим:

  1. Предварительная выдержка 2 ч а са;
  2. Подъем температуры 3 часа;
  3. Изотермическая выдержка 5 часов;
  4. Время охлаждения 2 часа.

Ит о го: 1 2 часов

Для расчета температур воспользуемся критериальными зависимостями т е плопроводности при нестационарных условиях теплопередачи. Бетон рассматр и ваем как инертное тело без учета теплоты, выделяющейся при гидратации ц е мента.

Качественную характеристику скорости изменения температуры тела при неустановившемся режиме учитывают критериальным ко м плексом Фурье:

где

- продолжительность нагрева (охлаждения), ч;

R - определяющий размер изделия, м;

a - коэффициент температуропроводности, м 2 /ч;

где

- коэффициент теплопроводности материала, Вт/(м º С), для твердеющего бет о на  =2,5 Вт/(м º С);

ρ - плотность бетона, кг/м 3 ,

с- теплоемкость материала, кДж/(кг º С),

КДж/(кг º С),

где

с ц,п,щ,в,м - массовые теплоемкости цемента, песка, щебня, воды, металла арматуры соответственно, кДж/(кг º С),

G ц,п,щ,в,м – масса цемента, песка, щебня, воды, металла арматуры соответственно, кг.

цемент

песок

щебень

вода

сталь

с, кДж/(кг º С)

0,84

0,84

0,89

4,19

0,48

G кг.

1157

КДж/(кг º С),

По формуле:

М 2 /ч

По формуле с учетом R =0,1 м. и τ =1,0 ч. имеем:

Зависимость скорости распространения теплоты в изделии от интенсивн о сти внешнего теплообмена учитываем критериальным ко м плексом Био:

где

α- коэффициент теплоотдачи от среды к поверхности обрабатываемого изделия Вт/(м 2 º С);

для α 1 =70, α 2 =80, α 3 =85, α 4 =90 имеем следующие знач е ния Bi :

; ; ; .

При расчете температуры материала в точке х используется критериальная зависимость типа:

где

 - безразмерная температура;

t с - средняя температура среды за соответствующий расчетный п е риод, º С

t н - температура изделия в начале расчетного периода, º С.

Температура на поверхности равна

Температура в центре изделия

Значения безразмерных температур  п и  ц определим по таблицам исходя из рассчитанных выше величин Fo и Bi :

 ц1 =0.75;  ц2 =0,73;  ц3 =0,72;  ц4 =0,71;  п1 =0,31;  п2 =0,29;  п3 =0,27;  п4 =0,25.

Средняя температура изделия за расчетный период определим по фо р муле

, º С

По формулам рассчитаем температуры в центре, на поверхности, а так же средние температуры бетона на 1, 2 и 3 часу режима подъема температ у ры и на протяжении 5-ти часов изотермической выдержки и занесем их в табл и цу.

Подъем температ у ры

Изотермическая выдержка

Q ц

0,75

0,73

0,72

0,71

0,71

0,71

0,71

0,71

Q п

0,31

0,29

0,27

0, 25

0, 25

0, 25

0, 25

0, 25

t п

22,48

40,24

61,36

75,34

78,83

79,71

79,93

79,98

t ц

17,71

25,75

37,91

44,91

55,08

62,31

67,44

71,08

t б ср

19,3

30,58

45,73

55,05

62,99

68,11

71,60

74,05

Для наглядности процесса разогрева бетона и паровоздушной среды построим график изменения температур во вр е мени

При таком тепловом расчете температур температуру изделий получают без учета теплоты гидратации. В реальных условиях температура бетона к концу изотермической выдержки может быть уменьшена на 5…10 º С по отношению к з а данной по режиму.


  1. Определение требуемого количества тепловых агрегатов, их размеров и схемы размещ е ния.

Часовая производительность установки изд/ч

где

N 0 - годовая производительность линии, м 3 ;

V изд - средний объем изделия,6*12*0,2=1,44 м 3

М- число рабочих дней в году;

К- число смен;

Z - продолжительность рабочей смены, ч.

Длина L к= L 1 + L 2 + L 3

где L 1 , L 2 , L 3 – длины зон подъема температуры, изотермической выдержки и охла ж дения соответственно, м

L к =63,83+106,38+42,55=212,76м

Так длина камеры не должна превышать 127м то принимаем две камеры с

L к =212,76/2=106,38м

Где l ф -длина формы - вагонетки, м

L 1 - зазор между формами - вагонетками по длине, м

Высота камеры

n я - количество ярусов в камере

h ф - высота формы вагонетки, м

а- свободный промежуток между формами – вагонетками по высоте, м

h 1 - расстояние от низа формы – вагонетки до пола камеры, определяется высотой рельсового пути от пола камеры и высотой рельса, м

h 2 - расстояние от верхней поверхности изделия до перекрытия, м

Ширина камеры при устройстве прохода по середине

В= b ф +2 b 1 =1.4+0.6=2м

b 1 - допустимый зазор между стенками камеры и формой – вагонеткой, м

При устройстве прохода с боку ширина В увеличивается на 0,6м.

В= 2 + 0,6 = 2,6м

Теплота экзотермии:

Количество теплоты гидратации, выделяемое 1 кг цемента:

М- марка цемента

количество градусо – часов от начала процесса, град/час

В/ц – водоцементное отношение

а – коэффициент.

Определяем количество градусо – часов за период подъема температуры:

Определяем удельную теплоту гидратации за период подъема:

Общее количество теплоты гидратации, выделяемое цементом находящегося в камере:

Определяем повышение средней температуры изделий за счет теплоты гидрат а ции цемента:

Вывод: за счет экзотермии цемента мы обеспечиваем догрев бетона до заданной температуры и данный режим тепловой обработки.


  1. Составление и расчет ура в нения теплового баланса установки.

Тепловой баланс установок непрерывного действия составляется в отдельн о сти для каждой зоны (подъема температуры и изотермической выдержки), при этом расчет производится на усредненную часовую производительность установки.:

КДж

где

Q = g r * i п – часовой расход теплоты, требуемый на тепловую обработку изделия, кДж/ч

β - коэффициент, учитывающий неподвижные потери те п лоты;

N r – Часовая производительность установки,

Q б - количество теплоты, расходуемое на нагрев бетона, кДж;

Q ф - количество теплоты, расходуемое на нагрев металла формы, кДж ;

Q пот - количество теплоты, потерянное установкой в окружающую среду, кДж;

Q к - потери с конденсатом, кДж.

Теплота на нагрев бетона . Количество теплоты, расходуемое на нагрев массы изделия, определим по формуле:

КДж

где с б - средневзвешенная теплоемкость бетонной массы изделия, кДж/(кг º С);

G б - масса изделия, кг;

t н , t к - средние температуры бетона в начале и конце соответствующего периода, º С.

Рассчитаем данную величину по периодам тепловой о б работки:

подъем температуры:

КДж

изотермическая выдержка:

КДж

Теплота на нагрев формы. Количество теплоты, расходуемое на нагрев мета л ла формы определим по выражению:

КДж

где c м - теплоемкость материала формы, кДж/(кг º С);

G ф - масса формы, кг;

t к - конечная температура поверхности бетона изделия в соответствующем пери о де, º С;

t н - начальная температура металла формы, равная в период подъема температуры – температуре воздуха в цеху или на улице, а в период изотермической выдержки – температуре поверхности бетона изделия в конце периода подъема темпер а туры, º С.

Рассчитаем данный показатель по периодам тепловой обрабо т ки

подъем температуры:

КДж

изотермическая выдержка

КДж

Теплота на разогрев конструкций камеры . Теплота на разогрев огражда ю щих конструкции установки для тепловой обработки рассчитывается по формуле:

КДж

где с i - массовая теплоемкость соответствующего слоя конструкции рассматр и ваемого ограждения.

G i - масса рассматриваемого слоя, кг

t к i - средняя конечная температура материала рассматриваемого слоя конструкции, º С;

t н i - начальная температура материала рассматриваемого слоя конструкции º С.

Сопротивление теплопередачи ограждающей конструкции:

Тепло потери на разогрев стен конструкции при Подъеме температуры.

Расчетный вес каждого элемента конструкции стены:

G 1 =58509 кг/м 3

G 2 = 1170.18 кг/м 3

G 3 = 4212.65 кг/м


Потери теплоты на разогрев стен конструкции при Изотермической выдержке

Потери теплоты на разогрев верха конструкции при Подъеме температуры:

расчет температуры на каждом слое ограждения:

Расчетный вес каждого элемента конструкции верха:

G 1 =69147 кг/м 3

G 2 = 1382,94 кг/м 3

G 3 = 4978,58 кг/м

Потери теплоты на разогрев верха конструкции при Изотермической выдержке

Сопротивление теплопередачи пола огражда ю щей конструкции:

Тепло потери на разогрев пола конструкции при Подъеме температуры.

расчет температуры на каждом слое ограждения:

Расчетный вес каждого элемента конструкции пола:

G 1 =110635,2 кг/м 3

G 2 = 22127,04 кг/м 3

Потери теплоты на разогрев пола конструкции при Изотермической выдержке


Потери теплоты в окружающую среду рассчитаем по следующей формуле

Потери теплоты при подъеме температуры:

Потери теплоты в грунт рассчитаем по следующей формуле

Потери теплоты при подъеме температуры

Потери теплоты при изотермической выдержке:

Полученные значения подставляем в уравнение теплового баланса и выражаем ч а совой расход теплоносителя для зоны подъема и изотермической выдержки:

Подъем температуры:

Изотермическая выдержка:

Теплота, теряемая с конденсатом. Теплота, теряемая с конденсатом, ра с считывается по формуле

кДж/ч

с к - теплоемкость конденсата (для воды с к =4,19), кДж/кг º С;

t к - температура конденсата.(70град)

Теплота теряемая на испарением воды:

r - теплота фазового перехода,(2232,2кДж/кг)


  1. Определение часовых и удельных расходов теплоты и теплоносителя по периодам (зонам) тепловой обр а ботки.

Часовой расход теплоносителя для периодов подъема температуры и изоте р мической выдержки определяется по формулам

Кг/ч

Кг/ч

где  Q I ,  Q II ,- суммарные расходы теплоты с учетом коэффициента неучтенных потерь за периоды подъема температуры и изотермической выдержки соотве т ственно, кДж.

 I ,  II - продолжительность каждого периода, ч.

По формулам (18) и (19) час рассчитаем часовые расходы пара

кг/ч,

кг/ч.

Удельный расход теплоносителя на 1 м 3 бетона рассчитывается по выраж е нию

Кг/м 3

где

N r - часовая производительность УНД по бетону, м 3 .

N н - недельная производительность установки, м 3 .

кг/м 3

Удельный расход теплоты на 1 м 3 бетона

КДж

КДж/м 3


  1. Расчет трубопровода.

Диаметр труб отходящих от установок рассчитывается по фо р муле

Средняя плотность теплоносителя на участке:

Средняя плотность теплоносителя:

Диаметр трубопровода для зоны подъема температур:

Диаметр трубопровода для зоны изотермической выдержки:

Диаметр учитывающий подъем температур и изотермическую выдержку:

Принимаем трубу для подъема температур  40

Принимаем трубу для изотермической выдержки  50

Принимаем трубу для подъема температуры и изотермической выдержки  60

Максимальный диаметр  70мм


  1. Предложения по экономии энергоресурсов и повышения качества и з делий .

Тепловую обработку бетонных и железобетонных изделий следует произв о дить с учетом закономерностей тепло- и массопереноса, параметров бетонной смеси и метода тепловлажностной обработки.

Снижение потребления энергоресурсов при запроектированном процессе производства железобетонных плит перекрытия может быть осуществлено за счет повышения термического сопротивления ограждающей конструкции – формы изд е лия.

Также снижения потребления энергоресурсов возможно обеспечить за счет повышения качества и точности применения контрольно-измерительной и запорно-регулирующей арматур.

Наиболее эффективными способами ускорения твердения бетона являются химические добавки – ускорители твердения и комплексные добавки, содержащие в себе суперпластификатор и ускоритель твердения..

Для сокращения производственного цикла и повышения качества бетона можно применить такие методы и режимы тепловой обработки как, например, предварительный паро- и электроразогрев составляющих бетонной смеси или с а мой бетонной смеси с последующим кратковременным во з действием тепла.

Применение предварительного паро- и электроразогрева бетонной смеси позволяет значительно уменьшить время тепловой обработки. Из общего цикла практически полностью исключается время предварительной выдержки и подъема температуры, до 1,5 раз сокращается длительность из о термического прогрева.


  1. Мероприятия по технике безопасности, охране труда и против о пожарной технике.

Охрана труда должна осуществляться в полном соответствии с «Правилами по технике безопасности и производственной санитарии на предприятиях строительной промышле н ности».

Следует подчеркнуть, что поступающие на предприятия рабочие должны допу с каться к работе только после обучения их безопасным приемам работы и инструкт а жа по технике безопасности. Ежеквартально должен проводиться дополнительный инструктаж и ежегодно — повторное обучение технике безопасности непосредс т венно на рабочем ме с те.

На действующих предприятиях необходимо оградить движущиеся части всех м е ханизмов и двигателей, а также электроустановки, прия м ки, люки, площадки и т. п.

Должны быть заземлены электродвигатели, а также разного вида электрическая аппаратура. Необходимо предусматривать соответствующие устройства и уст а новки подъемно-транспортных механизмов для безопасного ведения ремонтных р а бот.

На участке, где ведутся монтажные работы, не производятся другие работы. Очистка, подлежащих монтажу элементов конструкций от грязи и наледи произв о дится до их подъема. Запрещается подъем сборных железобетонных конструкций, не имеющих монтажных петель или меток, обеспечивающих их правильную строповку и монтаж.

Применяемые способы строповки элементов конструкций и оборудования обесп е чивают их подачу к месту установки в положении, близком к проектному. Люди, на элементах конструкций и оборудования, находящихся на весу, отсутствуют. Элеме н ты монтируемых конструкций или оборудования во время перемещения удерживаются от вращения и раскачивания гибкими о т тяжками.

При производстве монтажных (демонтажных) работ в условиях действующего предприятия эксплуатируемые электросети и другие действующие инженерные си с темы в зоне работ, как правило, отключаются и закорачиваются. Оборудование и трубопроводы освобождены от взрывоопасных, горючих и вредных в е ществ.

При производстве монтажных работ для закрепления технологической и мо н тажной оснастки используются оборудование и трубопроводы, а также технологич е ские и строительные конструкции с согласованием с лицами, ответственными за правильную их эксплуатацию.

При надвижке конструкций и оборудования лебедками грузоподъемность тормо з ных лебедок должна быть равна грузоподъемности тяговых, если иные требования не установлены проектом. Распаковка и расконсервация подлежащего монтажу оборуд о вания производится в зонах, отведенных в соответствии с проектом производства работ, и осуществляется на специальных стеллажах или подкладках высотой не м е нее 100мм. При расконсервации оборудования не допускается применение материалов со взр ы во- и пожароопасными свойствами.

Укрупнительная сборка и доизготовление подлежащих монтажу конструкций и оборудования (нарезка резьбы на трубах, гнутье труб, подгонка стыков и тому подо б ное) должны выполняться, как правило, на специально предназначенных для этого местах.

В процессе выполнения сборочных операций, совмещения отверстий и проверка их совпадения в монтируемых деталях производится с использованием специального оборудования. Проверять совпадение отверстий в монтируемых деталях пальцами рук не допускается.

При монтаже оборудования должна быть исключена возможность самопроизвол ь ного или случайного его включения.

При перемещении оборудования расстояние между ним и выступающими частями смонтированного оборудования или других конструкций должны быть по горизонтали не менее 1м, по ве р тикали - 0,5м.

При монтаже оборудования с использованием домкратов должны быть приняты меры, исключающие возможность перекоса или опрокидыв а ния домкратов.


  1. Перечень использованной литерат у ры.
  1. Вознесенский А.А. Тепловые установки в производстве строительных матери а лов и изделий. – М.: Стройиздат, 1964.
  2. Нестеров Л.В, Орлович А.И. Методические указания к курсовому проекту по ди с циплине «Теплотехника и теплотехнического оборудование». - Мн.: БГПА, 1997.
  3. СНБ 2.04.01.-97. Строительная теплотехника. - Мн.: Министерство архитект у ры и строительства РБ, 1997.
  4. ГОСТ 26434-85. Перекрытия железобетонные. - М.: Издательство станда р тов, 1984.
  5. Кокшарев В.Н., Кучеренко А.А. Тепловые установки.- Киев: Высшая школа, 1990.-335 с.
  6. Перегудов В,В., Роговой М.И., Тепловые процессы и установки в технологии строительных изделий и деталей. – М.: Стройиздат, 1983. – 416 с.


Ра
з раб.

Русецкий

Wednesday October 02, 2013 2002-12-07T21:10:00Z

ПЗ

Лист

Пров.

Орлович

24

Изм.

Лист

№ д о кум.

Подпись

Д а та

Сегодня пустотные плиты перекрытия являются наиболее востребованными на рынке строительства многоэтажных жилых домов. Они одинаково хорошо подходят для возведения зданий из бетона, кирпича или газобетонных блоков. Многопустотные плиты перекрытия внешне представляют собой параллелепипед. При их изготовлении внутри формируется несколько продольных полостей в виде труб. Благодаря таким конструктивным особенностям многопустотные плиты перекрытия обладают рядом важных эксплуатационных характеристик.

Основные преимущества

  • Низкий вес. Наличие пустот внутри плиты позволяет значительно облегчить конструкцию здания без ущерба для ее прочности. Это упрощает расчет фундамента и выбор подходящих грунтов и строительных материалов.
  • Высокая прочность. Наличие армирования делает плиты железобетонные перекрытия многопустотные чрезвычайно устойчивыми как к изгибающим, так и скручивающим нагрузкам. Они способны выдерживать нагрузку от 450 до 3000 килограммов на метр квадратный.
  • Отличная теплоизоляция и звукоизоляция. Воздух является отличным изолятором, поэтому наличие полостей в структуре делает плиты ЖБ перекрытия пустотные незаменимыми при строительстве жилых зданий, где сохранение тепла и шумозащита являются важнейшими факторами.
  • Удобство прокладки коммуникаций. Наличие в плите перекрытия многопустотной (ПК) полостей позволяет осуществить закладку кабель-каналов еще на стадии строительства здания. Для этого используются специальные короба или гофрированные трубы, в которых предусмотрены тросики или проволока для облегчения протяжки коммуникаций.
  • Низкая стоимость плит перекрытия пустотных. Благодаря наличию полостей при производстве данного строительного материала расходуется сравнительно небольшое количество сырья (бетона). Таким образом, отпускная цена на многопустотные плиты перекрытия относительно невысока и зависит в первую очередь от их геометрических размеров.

Маркировка

Перечислим основные параметры, которые указываются в маркировке на плиты перекрытия многопустотные: размеры, диаметр полостей, тип армирования и способ изготовления. Рассмотрим возможные варианты:

По типу (способу изготовления):

  • ПК - плиты перекрытия, изготовленные из предварительно напряженного железобетона с высотой поперечного сечения 220 мм;
  • НВ (НВК, НВКУ, 4НВК) - многопустотные предварительно напряженные плиты перекрытий стендового безопалубочного формования для жилых и общественных зданий. Бывают с однорядным (НВ) и двурядным армированием;
  • ПБ - многопустотные плиты, изготовленные методом непрерывного формования, предназначенные для опирания по двум сторонам.

Приведем пример расшифровки плиты 1ПК 63 15 6 АtV:

  • Тип плиты - ПК. 1ПК означает, что диаметр пустот 159 мм (2ПК - 140 мм, 3ПК - 127 мм).
  • Длина плиты - 63 дм, ширина - 15 дм.
  • Плита изготовлена из тяжелого бетона с напрягаемой арматурой класса АtV.

Для плит ПК часто используют упрощенную маркировку. В ней указывается только габариты и расчетная нагрузка. Приведем несколько маркировок таких плит перекрытий в порядке возрастания цены: ПК 10 10 8, ПК 12 10 8, ПК 15 12 8, ПК 60 15 10, ПК 72 12 8, ПК 72 15 8 и так далее. По умолчанию диаметр полостей считается равным 159 мм.

Где купить пустотные плиты перекрытия?

Данный строительный материал представлен на рынке весьма широко, однако выгоднее всего приобретать его без посредников у производителя. Компания ООО «Хоумстрой» предлагает купить пустотные плиты перекрытия высокого качества с доставкой нашим транспортом в любой район Москвы и области.

Плитами перекрытия называют горизонтальные конструкции, которые выполняют функцию междуэтажных или чердачных перегородок, установленных между кровлей и последним этажом дома. В современном строительстве обычно прибегают к установке бетонных перекрытий, при этом абсолютно не важно, сколько уровней у строения. В этой статье мы рассмотрим типы и размеры плит перекрытия, которые применяются на строительных объектах чаще всего. Данные изделия составляют основную долю продукции, которая выпускается на заводах ЖБИ.

Назначение конструкции

Несущие конструкции производят из тяжелого или легкого бетона, а усиливают их структуру при помощи арматуры, которая придает прочность изделиям. На современном рынке строительных материалов представлены все стандартные виды ЖБ плит, которые можно разделить на несколько категорий в зависимости от того, какая у них ширина, длина, вес, и другие не менее важные параметры, влияющие на основные характеристики изделий.

Самая распространенная методика классификации бетонных панелей заключается в разделении их по виду поперечного сечения. Также существует еще несколько отличительных характеристик, которые мы обязательно рассмотрим в нашей статье.

Многопустотные железобетонные панели ПК

Это одни из самых часто встречающихся разновидностей изделий, выпускающихся на заводах ЖБИ, которые одинаково хорошо подходят для строительства частного и многоэтажного дома. Также многопустотные ПК изделия широко применяются в возведении массивных промышленных зданий, с их помощью обеспечивают защиту теплотрасс.

Многопустотные плиты перекрытия характеризуются наличием пустот

Ровная плоская поверхность, которой обладают круглопустотные жб панели, позволяет монтировать надежные перекрытия между этажами, выдерживающие внушительные нагрузки. Данная конструкция снабжена полостями с сечениями различной формы и диаметра, которые бывают:

  • круглыми;
  • овальными;
  • полукруглыми.

Технологические пустоты, которые в процессе монтажа заполняются воздухом, благодаря этой своей особенности пользуются повышенным спросом, что говорит о преимуществах именно такой конфигурации блоков . К неоспоримым достоинствам ПК относится:

  1. Существенная экономия сырья, что позволяет снизить себестоимость готового изделия.
  2. Высокий коэффициент тепловой и шумовой изоляции, улучшающий эксплуатационные характеристики постройки.
  3. Круглопустотные панели являются отличным решением для прокладки коммуникационных магистралей (проводов, труб).

Железобетонные конструкции данного типа можно условно разделить на подгруппы, и далее мы расскажем, какие бывают круглопустотные перекрытия и по каким признакам их можно отнести к той или иной подгруппе. Эта информация будет важна для правильного выбора материала в зависимости технологических требований строительства.

Плиты разнятся способом установки: у 1 ПКТ есть три опорные стороны, в то время как 1 ПКК может быть уложена на все четыре стороны .

Также необходимо обращать внимание и на размер внутренних пустот – чем меньше диаметр отверстий, тем выносливее и прочнее круглопустотные панели . К примеру, у образцов 2ПКТ и 1 ПКК аналогичная ширина, толщина, длина и количество опорных сторон, однако в первом случае диаметр пустотелых отверстий равен 140 мм, а во втором – 159 мм.

Что касается прочности продукции, выпускаемой заводами, то на ее показатели непосредственно влияет толщина, которая в среднем составляет 22 см. Существуют и более массивные панели с толщиной в 30 см, а при заливке облегченных образцов соблюдают этот параметр в пределах 16 см, при этом в большинстве случаев используют легкий бетон.

Отдельно стоит упомянуть о несущей способности изделий ПК. В большинстве своем многопустотные перекрытия ПК, согласно общепринятым стандартам, выдерживают нагрузку в 800 кг/м2 . Для строительства массивных зданий промышленного назначения применяют плиты, изготовленные из напряженного бетона, этот параметр увеличивают до расчетного значения в 1200-1250 кг/м2. Расчетная нагрузка – это вес, превышающий аналогичную величину самого изделия.

Производители выпускают железобетонные панели стандартных размеров, но иногда параметры могут существенно отличаться. Длина ПК может варьироваться в диапазоне 1,5м – 1,6 м, а их ширина составляет 1 м, 1,2 м, 1,5 м и 1,8 м . Наиболее легкие и малогабаритные перекрытия весят менее полутонны, в то время как самые массивные и тяжелые образцы обладают весом в 4 000 кг.

Круглопустотные конструкции очень удобны в использовании, ведь застройщик всегда имеет возможность подбирать материал необходимого размера, и это еще один секрет популярности данной продукции. Ознакомившись с самыми распространенными ПК изделиями, к которым относятся пустотные плиты перекрытия, рассмотрев их виды и размеры, предлагаем перейти к другой продукции аналогичного назначения.

Сборные ребристые (П-образные) панели

Свое название данные железобетонные конструкции получили благодаря особой конфигурации с двумя продольными ребрами жесткости, а применяются они в строительстве нежилых помещений и в качестве несущих элементов для прокладки теплоцентралей и сетей водопровода. Для усиления жб изделий на этапе их заливки проводят армирование, что вкупе с особой формой приводит к экономии сырья, придает им особую прочность и наделяет устойчивостью к изгибу. Их не принято устанавливать в качестве перемычек между этажами для жилого дома, так как здесь придется столкнуться с неэстетичным потолком, который достаточно сложно снабдить коммуникациями и обшить облицовкой. Здесь также есть свои подвиды, рассмотрим, какие отличия имеются у изделий в рамках одной группы.


Конструкция ребристых плит отличается высокой прочностью

Первая и основная отличительная особенность П-образных конструкций заключается в их размерах, а точнее, в показателях высоты, которая составляет 30 или 40 см . В первом случае мы сталкиваемся с изделиями, которые применяются при возведении зданий общественного назначения и в качестве перемычек между верхним этажом дома и чердачным помещением. Для массивных крупногабаритных коммерческих и промышленных зданий обычно выбирают плиты с высотой в 40 см. Ширина ребристых перекрытий может составлять 1,5 или 3 м (для более прочных образцов), а их вес колеблется в пределах 1,5 – 3 т (в редких случаях до 7 т). Сборные ребристые бетонные плиты характеризуются следующими показателями длины:

  • 12 м.
  • 18 м (редко).

Сплошные доборные конструкции

Если необходимо получить особо прочное перекрытие между этажами дома, прибегают к помощи сплошных перемычек, так как они с легкостью выдерживают нагрузку в 1000-3000 кгс/м2, и применяют их в основном при монтаже многоэтажных зданий.


Сплошные перемычки позволяют смонтировать высокопрочное перекрытие

У таких изделий есть минусы, ведь их вес для сравнительно небольших габаритов достаточно внушительный: стандартные образцы весят от 600 кг до 1500 кг . Также у них слабоваты показатели тепловой и шумовой изоляции, что не позволяет им достойно конкурировать с пустотелыми ПК образцами. Длина данного вида панелей составляет от 1,8 м до 5 м, а толщина равна 12 или 16 см.

Монолитные конструкции

Предыдущий и данный виды панелей имеют одинаковую сферу применения и устанавливаются там, где есть необходимость создать крепкую постройку, способную выдержать сверхнагрузки. Такая перегородка не содержит полостей и создается непосредственно на стройплощадке по имеющимся точным расчетам, поэтому она может принимать любую конфигурацию и размеры, ограниченные лишь площадью возводимого объекта.

В статье мы подробно описали, какие бывают виды панелей перекрытия, какими стандартными размерами они обладают и где применяются чаще всего, поэтому вы сможете выбрать необходимые изделия для предстоящего строительства и получите прочную долговечную конструкцию, способную прослужить вам не менее столетия.


Тот, кто хотя бы раз имел дело со строительством дома знает, насколько большое значение имеют пустотные железобетонные плиты или панели перекрытия. Многопустотные бетонные плиты перекрытия, по сути, и составляют около 90% от общего веса дома. Плиты перекрытия (ПК) могут сильно различаться и по весу, и по своим размерам, в зависимости от того, в каких конкретно целях их используют.

Конструкционные особенности пустотных плит

Как просто догадаться, внутри железобетонные плиты перекрытия (ПК) являются пустотными, в силу чего и маркируются при продаже как многопустотные. Но отверстия внутри таких плит, вопреки заблуждению, может иметь не только овальную, но и круглую, квадратную и иную форму.



Схема опирания пустотной плиты перекрытия

Впрочем, в большинстве случаев плиты перекрытия (ПК) имеют именно цилиндрические пустотные окружности внутри.

Интересно, что плиты перекрытия (ПК) могут быть и безармированными, и армированными. Железобетонные плиты перекрытия (ПК) будут являться именно армированными.

Такие плиты перекрытия (ПК) хоть и имеют значительно больший вес, что в конечном итоге повышает и нагрузку на здание, и стоимость строительства, однако, имеют большой запас прочности. Монтаж плит перекрытие, именно сам способ монтажа, зависит от того, на какое опирание будут ставиться плиты, ведь опирание - тоже важный критерий.

Например, если опирание плиты недостаточно устойчиво, то это может привести к неприятным последствиям, чего, естественно, необходимо избегать.



Схема укладки пустотной плиты на втором этаже

Характеристика пустотных плит

Размер

От размера пустотной ПК зависит и её конечная стоимость, важное значение, помимо таких параметров, как ширина и длина, имеет также и вес.

Размеры ПК варьируются следующим образом:

  • по длине размер ПК колеблется в диапазоне от 1180 до 9700 миллиметров;
  • по ширине размер ПК колеблется от 990 до 3500 миллиметров.

Наиболее популярными и востребованными являются многопустотные панельные плиты, длина которых составляет 6000 мм, а ширина 1500 мм. Важное значение также имеет высота или толщина панели (правильнее будет говорить о высоте, но строители, как правило, говорят «толщина»).

Так вот, толщина, которую могут иметь многопустотные панели, всегда является неизменной величиной — 220 мм. Большое значение имеет, конечно же, и вес панели перекрытия. Бетонные плиты перекрытия должен поднимать кран, грузоподъёмность которого минимально составляет 4-5 тонн.



Сравнительная таблица координационных размеров пустотных плит перекрытия

Длина и вес панелей имеют важнейшее значение для строительства, длина даже меньший по важности показатель, нежели вес.

Вес

Что касается такого важного параметра, как вес, то здесь всё предельно понятно с первого раза: диапазон выпускаемых в России изделий находится в пределах от 960 килограммов до 4,82 тонн. Вес является главным критерием, по которому определяется способ, с помощью которого будет осуществляться монтаж панелей.

Обычно используют краны, как уже отмечалось выше, с грузоподъёмностью минимум 5 тонн (разумеется, краны должны поднимать тяжесть с некоторым запасом).

Вес панелей одинаковой маркировки может отличаться, но незначительно: ведь если рассматривать вес с точности до одного грамма, на него может повлиять всё что угодно.



Сравнительная характеристика основных марок пустотных плит

Если, например, изделие попало под дождь, то оно априори будет немного тяжелее того изделия, которое под дождь не попало.

Виды нагрузок

Для начала необходимо отметить, что любое перекрытие предполагает наличие 3 следующих частей:

  1. Часть верхняя, с этажом, где живут люди. Соответственно, нагружать панель будет напольное покрытие, разнообразные утеплительные элементы и, конечно же, бетонные стяжки - главная составляющая нагрузки;
  2. Часть нижняя, с наличием потолка, его отделки, осветительных приборов. Кстати, насчёт наличия осветительных приборов скептически относиться не стоит. Во-первых, те же светодиодные лампы требует частичного разрушения плиты перфоратором для прокладки кабеля. Во-вторых, если брать большие помещения, с колоннами и залами, там могут висеть огромные хрустальные люстры, которые дадут большую нагрузку, чем любой другой прибор или вид отделки. Это тоже обязательно надо учитывать;
  3. Конструкционная. Она объединяет сразу и верхнюю и нижнюю части, как бы поддерживая их в воздухе.

Пустотная плита - это и есть конструкционная плита, которая поддерживает в воздухе и верхнюю, и нижнюю часть перекрытия!

Кстати, не стоит сбрасывать со счетов и динамическую нагрузку. Её, как несложно догадаться, создают сами люди, а также передвигаемые ими вещи. Всё это сказывается и на свойствах и состояниях панели.



Схема устройства пустотной плиты с наличием отверстий

Например, если один раз перевезти тяжеленное пианино в небольшом двухэтажном доме с одного место на другое - это нормально, то ежедневное передвижение создаст на плиту многопустотную уже гораздо большее негативное влияние. Упадёт она вряд ли, а вот с вентилируемостью впоследствии могут быть серьёзные проблемы.

По типу распределения нагрузки делятся ещё на 2 группы:

  • распределённые;
  • точечные.

Чтобы понять разницу между двумя этими видами, стоит привести пример. Та же огромная хрустальная люстра, которая весит под одну тону - это нагрузка точечная. А вот натяжной потолок с каркасом по всей поверхности плиты - это уже распределённая нагрузка.



Устройство технологической линии по производству пустотных плит

Но бывает ещё и совмещённая нагрузка, объединяющая точечную и распределённую. Например, наполненная доверху ванна. Сама по себе ванна стоит на ножках, и её давление на ножки - разновидность распределённой нагрузки. А вот стоящие на полу ножки - это уже точечная нагрузка.

От веса пустотной плиты напрямую зависит её стоимость.

Сложновато, но разобраться с этим можно. И нужно! Ведь расчёт на перекрытия и пустотные плиты при строительстве всё равно необходимо будет производить.

Марки пустотных плит

Собственно говоря, марок как таковых пустотные плиты даже не имеют. Речь идёт о маркировке, в которой отражены некоторые параметры. Достаточно привести небольшой пример.



Схема укладки пустотной плиты на ригель

Допустим, панель имеет следующую маркировку: ПК 15-13-10 ПК - означает пустотную плиту; все цифровые обозначения указывают на какие-либо технические параметры.

15 будет означать, что панель имеет длину в примерно 15 дециметров (1,5 метра). Почему примерно? Просто длина может быть 1,498 метра, а на маркировке производили имеют право округлять эту цифру до 1,5 метров (15 дециметров). Цифра 12 означает, что изделие имеет ширину в 10 дециметров. Последняя цифра (в данном случае — 10) наиболее важный показатель.

Это нагрузка, которую может выдержать материал (предельно допустимая). В нашем случае нагрузка по максимуму будет составлять 10 килограммов на 1дм². Обычно строители считают нагрузку в расчёте на метр квадратный, здесь она будет составлять 1000 килограммов на 1м². В общем, всё не так уж и сложно.

Марка панелей всегда имеет вида ПК-XX-XX, если продавцы предлагают другие варианты, то стоит насторожиться.

Расчёт нагрузки

Расчёт предельного воздействия

Расчёт предельного воздействия - обязательное условие при проектировании здания. Размеры и другие параметры панелей определяются ещё старым добротным советским ГОСТ под номером 9561-91.



Устройство пустотной плиты с наличием армированной стяжкой

Для того чтобы определить ту нагрузку, которая будет оказываться на изделие, необходимо на чертеже будущего строения указать вес абсолютно всех элементов, которые будут «давить» на перекрытие. Их суммарный вес и будет являться предельной нагрузкой.

Прежде всего необходимо учесть вес следующих элементов:

  • цементно-песчаные стяжки;
  • перегородки из гипсобетона;
  • масса напольного покрытия или панелей;
  • теплоизоляционные материалы.

Впоследствии все полученные показатели суммируются и разделяются на количество панелей, которые будут присутствовать в доме. Отсюда и можно получить максимальную, предельную нагрузку на каждое конкретное изделие.

Расчёт оптимальной нагрузки

Понятно, что максимально допустимый уровень - это критический показатель, доводить до которого ни в коем случае нельзя. Поэтому лучше всего рассчитывать именно оптимальный показатель. Например, панель весит 3000 кг. Нужна она для площади в 10 м².

Необходимо разделить 3000 на 10. В результате получится, что максимально допустимое значение нагрузки составит 300 килограммов на 1 м². Это маленький показатель, но ведь надо учитывать ещё и вес самого изделия, на который тоже рассчитывалась нагрузка (допустим, её значение равно 800 килограммам на 1м²). От 800 нужно отнять 300, в итоге получается 500 килограммов на 1 м².

Теперь нужно приблизительно прикинуть, сколько будут весить все нагружающие элементы и предметы. Пусть этот показатель будет равняться 200 килограммам на 1 м². От предыдущего показателя (500кг/м²) нужно отнять полученный (200кг/м²). В результате получится показатель в 300 м². Но и это ещё не всё.



Схема устройства пустотной плиты с наличием гидроизоляции

Теперь от этого показателя необходимо отнять вес мебели, отделочных материалов, вес людей, которые постоянно будут находиться в помещении или в доме. «Живой вес» и все элементы, их нагрузка, пусть составляет 150 кг/м². От 300 необходимо отнять 150. В результате всего и получится оптимально допустимый показатель, обозначение которого составит 150 кг/м². Это и будет оптимальная нагрузка.

Преимущества пустотных плит

Среди преимущества данных изделий можно выделить следующие:

  • относительно небольшая нагрузка на периметр всего здания, в отличие от тех же полнотелых изделий;
  • высокие показатели прочности, несмотря на то, что внизу панели являются пустотными;
  • надёжность;
  • осадка дома будет гораздо менее интенсивной, чем при использовании полнотелых изделий (собственно, это преимущество исходит от относительно небольшого веса);
  • относительно небольшая стоимость.

В целом многопустотные панели - это один из главнейших строительных материалов. Сегодня его выпускает всего лишь несколько заводов во всей огромной России. Главное, как уже отмечалось выше - это не дать себя обмануть при покупке.



Схема устройства арматурных блоков в пустотной плите перекрытия

Иногда (такое встречается редко, но всё же) продавцы пытаются реализовать некачественные панели, так называемые облегчённые. Они, например, могут иметь маркировку, где показывается, что изделие рассчитано на нагрузку в 500 килограммов на один квадратный метр, а на деле этот параметр в несколько раз ниже.

Это даже не мошенничество, это - уголовное преступление, которое должно караться по всей строгости закона. Ведь если покупать панель, рассчитанную на меньшую нагрузку, возникает серьёзный риск обрушения строений. Такую ситуацию можно наблюдать не только в провинции, но даже в Москве или Петербурге.

В общем, при покупке подобной продукции нужно быть предельно осторожным. Важно помнить, что любая ошибка при проектировании может иметь даже трагические последствия.

Видео

Можете посмотреть видео, где специалисты детально рассказывают об особенностях различных видов пустотных плит.

При строительстве дома перед любым застройщиком возникает вопрос выбора междуэтажного перекрытия. Наиболее распространены три типа перекрытий – деревянное, монолитное железобетонное и сборное железобетонное, смонтированное из плоских пустотных плит. Именно об этом виде перекрытия, как наиболее популярном и практичном для малоэтажного строительства, пойдёт речь в этом материале. Из этой про межэтажные перекрытия в частном доме вы узнаете:

  • Чем отличаются плиты перекрытий многопустотные (ПК) от плит перекрытий, изготовленных методом безопалубочного формования (ПБ).
  • Как правильно укладывать перекрытия.
  • Как избежать ошибок при монтаже.
  • Как складировать плиты перекрытия.

Как выбрать пустотную плиту перекрытия

При первом взгляде на пустотные перекрытия может показаться, что они отличаются между собой только по длине, толщине и ширине. Но технические характеристики пустотных плит перекрытия гораздо шире и подробно расписываются в ГОСТ 9561-91.

Пустотная плита перекрытия, частный дом.

Пустотные межэтажные плиты отличаются между собой по способу армирования. Причём, армирование (в зависимости от типа плит) может быть выполнено с использованием предварительно напряжённой арматуры или без напрягаемой арматуры. Чаще используются перекрытия с предварительно напряжённой рабочей арматурой.

Выбирая плиты перекрытия, следует обратить внимание на такой важный момент, как допустимое количество сторон, на которые можно их опереть. . Обычно опирать можно только на две короткие стороны, но некоторые виды плит допускают опирания на три и на четыре стороны.

  • ПБ. Предусматривает опирание по двум сторонам;
  • 1ПК. Толщина – 220 мм. Диаметр круглых пустот – 159 мм. Допускает опирание только на две стороны;
  • 1ПКТ. Имея аналогичные размеры, допускает опирание на три стороны;
  • 1ПКК. Можно опирать на четыре стороны.

Также плиты перекрытия различаются между собой по способу изготовления. Часто возникает спор, что предпочесть – ПК или ПБ.

Andrey164 Пользователь FORUMHOUSE

Пришло время перекрывать цокольный этаж постройки плитами перекрытия, но никак не могу определить, что выбрать – ПК или ПБ, у ПБ лучше обработана поверхность, чем у ПК, но слышал, что ПБ используются только в монолитно-каркасных домах и дачных домиках, а конец такой плиты нельзя нагружать стеной.

Саша1983 Пользователь FORUMHOUSE

Главное отличие плит кроется в технологии их изготовления.

ПК (толщиной от 160 до 260 мм и типовой несущей способностью в 800 кг/кв.м.) отливают в опалубке. Панели марки ПБ (толщиной от 160 мм до 330 мм и типовой несущей способностью от 800 кг/кв.м) изготавливаются методом безопалубочного непрерывного литья (это позволяет получить более гладкую и ровную поверхность, чем у панелей ПК). ПБ ещё называют экструдерными.

ПБ, за счёт предварительного напряжения сжатой и растянутых зон (преднапряжение арматуры делается при любой длине плиты), меньше подвержены растрескиванию, чем ПК. ПК при длине до 4.2 метров могут выпускаться без преднапряжённой арматуры и имеют больший свободный прогиб, чем ПБ.

По желанию заказчика, ПБ можно нарезать под индивидуальные заданные размеры (от 1.8 до 9 метров и т.д.). Их также можно резать вдоль и на отдельные продольные элементы, а также делать косой рез под углом в 30-90 градусов, без потери её несущей способности. Это значительно упрощает раскладку таких плит перекрытия на строительном объекте и предоставляет большую свободу проектировщику, т.к. размеры коробки здания и несущих стен не привязаны к стандартным размерам ПК.

При выборе межэтажных плит ПК (длиной более 4.2 метра) важно запомнить такую особенность – они являются преднапряженными со специальными упорами на концах плиты. Если срезать торец у ПК, то упор (отрезанный вместе с концом ПК и вертикальной арматурой) не будет работать. Соответственно – рабочая арматура станет цепляться за бетон только своей боковой поверхностью. Это значительно уменьшит несущую способность плиты.

Несмотря на более качественную гладкую поверхность, хорошую геометрию, меньший вес и высокую несущую способность, при выборе ПБ следует учесть такой момент. Пустотные отверстия в ПК (в зависимости от ширины плиты, диаметром от 114 до 203 мм) позволяют без труда пробить в ней отверстие под канализационный стояк, диаметром в 100 мм. В то время как размер пустотного отверстия в ПБ – 60 мм. Поэтому, для пробития сквозного отверстия в панели марки ПБ (чтобы не повредить арматуру), следует заранее уточнить у завода-изготовителя, как это лучше сделать.

Плиты перекрытия для частного дома: особенности монтажа

У ПБ (в отличие от ПК) отсутствуют монтажные петли (либо приходится доплачивать за их установку), что может усложнить их погрузку, выгрузку и монтаж.

Не рекомендуется использовать «народный» метод установки ПБ, когда крепёжные крюки цепляются за торец пустотного отверстия. В этом случае велика вероятность, что крюк вырвет из отверстия из-за разрушения торца плиты, либо крюк просто соскользнёт. Это приведёт к падению плиты. Также на свой страх и риск можно применить метод, при котором в пустотные отверстия ПБ вставляется лом (по два лома на одну сторону плиты) и за них цепляются крюки.

Монтаж плит ПБ допускается только с использованием мягких чалок или специальной траверсы.

ProgC Пользователь FORUMHOUSE

Чтобы выдернуть чалку из-под плиты, укладывая её, оставляем зазор в 2 см до соседней плиты. Затем уже уложенную плиту сдвигаем ломом к соседней.

Max_im Пользователь FORUMHOUSE

Личный опыт: я уложил у себя на стройке плиты таким методом. Зазор оставлял в 3 см. Плиты ложились на цементно-песчаную смесь толщиной 2 см. Смесь выполняла роль смазки, а плиты легко сдвигались ломом на необходимое мне расстояние.

Также при монтаже плит перекрытия необходимо соблюдать расчётные величины минимальной глубины опирания плиты. Для ориентира можно использовать следующие цифры:

  • кирпичная стена, минимальная глубина опирания составляет 8 см, максимальная глубина опирания – 16 см;
  • железобетон – 7 см, максимальная глубина опирания – 12 см;
  • газо- и пенобетонные блоки – минимум 10-12 см, оптимальная глубина опирания – 15 см;
  • стальные конструкции – 7 см.

Не рекомендуется опирать плиту перекрытия более чем на 20 см, т.к. при увеличении глубины опирания она начинает «работать», как защемлённая балка. При укладке панелей перекрытия на стены, построенные их газо- и пенобетонных блоков, необходимо устройство армированного железобетонного армопояса, о чём подробно рассказывается в статье: . Прочитайте также нашу статью, которая подробно рассказывает, . Желаем успешно применять полученные знания на своих стройках!

Перед началом монтажа плит рекомендуется заделать торцы пустотных отверстий. Пустоты заделываются, чтобы вода не попала внутрь панели. Также это увеличивает прочность у торцов плит (это в большей степени относится к ПК, чем к ПБ) в случае опирания на них несущих перегородок. Пустоты можно заделать, если вставить в них половинку кирпича и «закидать» промежуток слоем бетона. Обычно пустоты заделываются на глубину не менее 12-15 см.

В случае, если вода всё же попала внутрь плит, её необходимо удалить. Для этого в панели, в «пустотке», снизу высверливается отверстие, через которое вода может вытечь наружу. Это особенно важно сделать, если перекрытия уже уложены, а дом ушёл в зиму без кровли. Вода в мороз может замёрзнуть внутри пустотного отверстия (т.к. вытечь ей некуда) и разорвать плиту.

Сергей Пермь Пользователь FORUMHOUSE

У меня уложенные на перекрытие плиты лежали целый год. Специально пробурил перфоратором отверстия в «пустотках», вытекло очень много воды. Сверлить надо каждый канал.

Перед укладкой плит перекрытия необходимо выбрать автокран необходимой грузоподъёмности. Важно учесть доступность подъездных путей, максимально возможный вылет стрелы у автокрана и допустимую массу груза. А также просчитать возможность укладывать панели перекрытия не с одной точки, а с двух сторон дома.

zumpf Пользователь FORUMHOUSE

Поверхность, на которую укладывается плита перекрытия, должна быть ровной, очищенной от мусора. Перед укладкой панели «расстилается» цементная смесь, т.н. растворная «постель», толщиной 2 см. Это обеспечит ее надёжное сцепление со стенами или армопоясом. Также перед монтажом панелей и до нанесения раствора на стену можно уложить арматурный прут диаметром 10-12 мм.

Подобный метод позволит строго контролировать вертикальность смешения всех плит при их укладке (т.к. ниже стержня панель уже не опустится). Стержень не даст ей полностью выдавить из-под себя цементный раствор и лечь «на сухую». Не допускается ставить плиты «ступеньками». В зависимости от длины плит, расхождение торцов не должно превышать 8-12 мм.

Серьёзной ошибкой при укладке является перекрытие одной плитой сразу двух пролётов, т.е. она опирается на три стены. Из-за этого в ней возникают непредусмотренные схемой армирования нагрузки, и при определённых, неблагоприятных обстоятельствах, она может треснуть.

Если же подобной раскладки избежать не удаётся, для снятия напряжения, по верхней поверхности панелей, точно над средней перегородкой (стеной) делается пропил болгаркой.

Ещё один момент, на котором следует заострить внимание – как перекрыть лестничный пролёт между плитами перекрытия, если их не на что опереть. В этом случае параллельно плитам можно пустить два швеллера, а один поставить поперёк, по краю проёма, связать арматурный каркас в виде сетки с ячейкой 20 см и диаметром прутка 8 мм и т.д. Поставить опалубку и залить монолитный участок. Привязывать швеллер к плитам перекрытия не надо. В этом случае они опираются на две короткие стороны и не подвергаются нагрузкам от узла опирания лестничного пролёта.

Как правильно складировать плиты перекрытия на участке

В идеале, если панели привезли на участок, их сразу нужно монтировать. Если по каким-либо причинам это сделать невозможно, возникает вопрос: как их правильно складировать.

Для складирования плит необходимо заранее подготовить твёрдую и ровную площадку. Нельзя класть их просто на землю. В этом случае нижняя плита может опереться на грунт, и, из-за неравномерной нагрузки, под весом верхних плит она переломится.

Изделия должны укладываться штабелем не более 8-10 шт. Причём под нижний ряд ставятся прокладки (из бруса 200х200 мм и т.п.), а все последующие ряды ставятся через прокладки – доску-дюймовку толщиной 25 мм. Прокладки должны располагаться не далее, чем в 30-45 см от торцов плит, и выставляться они должны строго по вертикали друг над другом. Это обеспечит равномерное перераспределение нагрузки.

, и прочитать про е. Видеосюжет раскрывает все



© 2024 Идеи дизайна квартир и домов