Вконтакте Facebook Twitter Лента RSS

Транспорт газов кровью кратко. Внутреннее дыхание и транспорт газов

— это физиологический процесс, обеспечивающий поступление в организм кислорода и удаление углекислого газа. Дыхание протекает в несколько стадий:

  • внешнее дыхание (вентиляция легких);
  • (между альвеолярным воздухом и кровью капилляров малого круга кровообращения);
  • транспорт газов кровью;
  • обмен газов в тканях (между кровью капилляров большого круга кровообращения и клетками тканей);
  • внутреннее дыхание (биологическое окисление в митохондриях клеток).

Изучает первые четыре процесса. Внутреннее дыхание рассматривается в курсе биохимии.

2.4.1. Транспорт кровью кислорода

Функциональная система транспорта кислорода — совокупность структур сердечно-сосудистого аппарата, крови и их регуляторных механизмов, образующих динамическую саморегулирующуюся организацию, деятельность всех составных элементов которой создает диффузионные ноля и градиенты pO2 между кровью и клетками тканей и обеспечивает адекватное поступление кислорода в организм.

Целью ее функционирования является минимизация разности между потребностью и потреблением кислорода. Оксидазный путь использования кислорода , сопряженный с окислением и фосфорилированием в митохондриях цепи тканевого дыхания, является наиболее емким в здоровом организме (используется около 96-98 % потребляемого кислорода). Процессы транспорта кислорода в организме обеспечивают также и его антиоксидантную защиту .

  • Гипероксия — повышенное содержание кислорода в организме.
  • Гипоксия - пониженное содержание кислорода в организме.
  • Гиперкапния — повышенное содержание углекислого газа в организме.
  • Гиперкапнемия — повышенное содержание углекислого газа в крови.
  • Гипокапния — пониженное содержание углекислого газа в организме.
  • Гипокаппемия - пониженное содержание углекислого газа в крови.

Рис. 1. Схема процессов дыхания

Потребление кислорода — количество кислорода, поглощаемое организмом в течение единицы времени (в покое 200- 400 мл/мин).

Степень насыщения крови кислородом — отношение содержания кислорода в крови к ее кислородной емкости.

Объем газов, находящихся в крови, принято выражать в объемных процентах (об%). Этот показатель отражает количество газа в миллилитрах, находящееся в 100 мл крови.

Кислород транспортируется кровью в двух формах:

  • физического растворения (0,3 об%);
  • в связи с гемоглобином (15-21 об%).

Молекулу гемоглобина, не связанную с кислородом, обозначают символом Нb, а присоединившую кислород (оксигемоглобин) — НbO 2 . Присоединение кислорода к гемоглобину называют оксигенацией (сатурацией), а отдачу кислорода — де- оксигенацией или восстановлением (десатурацией). Гемоглобину принадлежит основная роль в связывании и транспорте кислорода. Одна молекула гемоглобина при полной оксигена- ции связывает четыре молекулы кислорода. Один грамм гемоглобина связывает и транспортирует 1,34 мл кислорода. Зная содержание гемоглобина в крови, легко рассчитать кислородную емкость крови.

Кислородная емкость крови — это количество кислорода, связанного с гемоглобином, находящимся в 100 мл крови, при его полном насыщении кислородом. Если в крови содержится 15 г% гемоглобина, то кислородная емкость крови составит 15 . 1,34 = 20,1 мл кислорода.

В нормальных условиях гемоглобин связывает кислород в легочных капиллярах и отдает его в тканевых благодаря особым свойствам, которые зависят от ряда факторов. Основным фактором, влияющим на связывание и отдачу гемоглобином кислорода, является величина напряжения кислорода в крови, зависящая от количества растворенного в ней кислорода. Зависимость связывания гемоглобином кислорода от его напряжения описывается кривой, получившей название кривой диссоциации оксигемоглобина (рис. 2.7). На графике но вертикали отмечен процент молекул гемоглобина, связанных с кислородом (%НbO 2), по горизонтали — напряжение кислорода (рO 2). Кривая отражает изменение %НbO 2 в зависимости от напряжения кислорода в плазме крови. Она имеет S-образный вид с перегибами в области напряжения 10 и 60 мм рт. ст. Если рО 2 в плазме становится больше, то оксигенация гемоглобина начинает нарастать почти линейно нарастанию напряжения кислорода.

Рис. 2. Кривые диссоциации: а — при одинаковой температуре (Т = 37 °С) и различном рСО 2 ,: I- оксимиоглобина нрн нормальных условиях (рСО 2 = 40 мм рт. ст.); 2 — окенгемоглобина при нормальных условиях (рСО 2 , = 40 мм рт. ст.); 3 — окенгемоглобина (рСО 2 , = 60 мм рт. ст.); б — при одинаковом рС0 2 (40 мм рт. ст.) и различной температуре

Реакция связывания гемоглобина с кислородом является обратимой, зависит от сродства гемоглобина к кислороду, которое, в свою очередь, зависит от напряжения кислорода в крови:

При обычном парциальном давлении кислорода в альвеолярном воздухе, составляющем около 100 мм рт. ст., этот газ диффундирует в кровь капилляров альвеол, создавая напряжение, близкое к парциальному давлению кислорода в альвеолах. Сродство гемоглобина к кислороду в этих условиях повышается. Из приведенного уравнения видно, что реакция сдвигается в сторону образования окенгемоглобина. Оксигенация гемоглобина в оттекающей от альвеол артериальной крови достигает 96-98%. Из-за шунтирования крови между малым и большим кругом оксигенация гемоглобина в артериях системного кровотока немного снижается, составляя 94-98%.

Сродство гемоглобина к кислороду характеризуется величиной напряжения кислорода, при котором 50% молекул гемоглобина оказываются оксигенированными. Его называют напряжением полунасыщения и обозначают символом Р 50 . Увеличение Р 50 свидетельствует о снижении сродства гемоглобина к кислороду, а его снижение — о возрастании. На уровень Р 50 влияют многие факторы: температура, кислотность среды, напряжение СО 2 , содержание в эритроците 2,3-дифосфоглицерата. Для венозной крови Р 50 близко к 27 мм рт. ст., а для артериальной — к 26 мм рт. ст.

Из крови сосудов микроциркуляторного русла кислород но его градиенту напряжения постоянно диффундирует в ткани и его напряжение в крови уменьшается. В то же время напряжение углекислого газа, кислотность, температура крови тканевых капилляров увеличиваются. Это сопровождается снижением сродства гемоглобина к кислороду и ускорением диссоциации оксигемоглобина с высвобождением свободного кислорода, который растворяется и диффундирует в ткани. Скорость высвобождения кислорода из связи с гемоглобином и его диффузии удовлетворяет потребности тканей (в том числе высокочувствительных к недостатку кислорода), при содержании НbО 2 в артериальной крови выше 94%. При снижении содержания НbО 2 менее 94% рекомендуется принимать меры к улучшению сатурации гемоглобина, а при содержании 90% ткани испытывают кислородное голодание и необходимо принимать срочные меры, улучшающие доставку в них кислорода.

Состояние, при котором оксигенация гемоглобина снижается менее 90%, а рО 2 крови становится ниже 60 мм рт. ст., называют гипоксемией.

Приведенные на рис. 2.7 показатели сродства Нb к О 2 , имеют место при обычной, нормальной температуре тела и напряжении углекислого газа в артериальной крови 40 мм рт. ст. При возрастании в крови напряжения углекислого газа или концентрации протонов Н+ сродство гемоглобина к кислороду снижается, кривая диссоциации НbО 2 , сдвигается вправо. Такое явление называют эффектом Бора. В организме повышение рСО 2 , происходит в тканевых капиллярах, что способствует увеличению деоксигснации гемоглобина и доставке кислорода в ткани. Снижение сродства гемоглобина к кислороду происходит также при накоплении в эритроцитах 2,3-дифосфоглицерата. Через синтез 2,3-дифосфоглицерата организм может влиять на скорость диссоциации НbO 2 . У пожилых людей содержание этого вещества в эритроцитах повышено, что препятствует развитию гипоксии тканей.

Повышение температуры тела снижает сродство гемоглобина к кислороду. Если температура тела снижается, то кривая диссоциации НbО 2 , сдвигается влево. Гемоглобин активнее захватывает кислород, но в меньшей мере отдает его тканям. Это является одной из причин, почему при попадании в холодную (4-12 °С) воду даже хорошие пловцы быстро испытывают непонятную мышечную слабость. Развивается переохлаждение и гипоксия мышц конечностей по причине как уменьшения в них кровотока, так и сниженной диссоциации НbО 2 .

Из анализа хода кривой диссоциации НbО 2 видно, что рО 2 в альвеолярном воздухе может быть снижено с обычного 100 мм рт. ст. до 90 мм рт. ст., а оксигенация гемоглобина будет сохраняться на совместимом с жизнедеятельностью уровне (уменьшится лишь на 1-2%). Такая особенность сродства гемоглобина к кислороду дает возможность организму приспосабливаться к снижению вентиляции легких и понижению атмосферного давления (например, жить в горах). Но в области низкого напряжения кислорода крови тканевых капилляров (10-50 мм рт. ст.) ход кривой резко меняется. На каждую единицу снижения напряжения кислорода деоксигенируется большое число молекул оксигемоглобина, увеличивается диффузия кислорода из эритроцитов в плазму крови и за счет повышения его напряжения в крови создаются условия для надежного обеспечения тканей кислородом.

На связь гемоглобина с килородом влияют и другие факторы. На практике важно учитывать то, что гемоглобин обладает очень высоким (в 240-300 раз большим, чем к кислороду) сродством к угарному газу (СО). Соединение гемоглобина с СО называют карбоксигелюглобином. При отравлении СО кожа пострадавшего в местах гиперемии может приобретать вишнево-красный цвет. Молекула СО присоединяется к атому железа гема и тем самым блокирует возможность связи гемоглобина с кислородом. Кроме того, в присутствии СО даже те молекулы гемоглобина, которые связаны с кислородом, в меньшей степени отдают его тканям. Кривая диссоциации НbО 2 сдвигается влево. При наличии в воздухе 0,1% СО более 50% молекул гемоглобина превращается в карбоксигемогло- бин, а уже при содержании в крови 20-25% НbСO человеку требуется врачебная помощь. При отравлении угарным газом важно обеспечить пострадавшему вдыхание чистого кислорода. Это увеличивает скорость диссоциации НbСO в 20 раз. В условиях обычной жизни содержание НbСOв крови составляет 0-2%, после выкуренной сигареты оно может возрасти до 5% и более.

При действии сильных окислителей кислород способен образовывать прочную химическую связь с железом гема, при которой атом железа становится трехвалентным. Такое соединение гемоглобина с кислородом называют метгемоглобином. Оно не может отдавать кислород тканям. Метгемоглобин сдвигает кривую диссоциации оксигемоглобина влево, ухудшая таким образом условия высвобождения кислорода в тканевых капиллярах. У здоровых людей в обычных условиях из-за постоянного поступления в кровь окислителей (перекисей, нитропронзводных органических веществ и т.д.) до 3% гемоглобина крови может быть в виде метгемоглобина.

Низкий уровень содержания этого соединения поддерживается благодаря функционированию антиоксидантных ферментных систем. Образование метгемоглобина ограничивают антиоксиданты (глутатион и аскорбиновая кислота), присутствующие в эритроцитах, а его восстановление в гемоглобин происходит в процессе ферментативных реакций с участием эритроцитариых ферментов дегидрогеназ. При недостаточности этих систем или при избыточном попадании в кровоток веществ (например, фенацетина, противомалярийных лекарственных препаратов и т.д.), обладающих высокими оксидантными свойствами, развивается мстгсмоглобинсмия.

Гемоглобин легко взаимодействует и со многими другими растворенными в крови веществами. В частности, при взаимодействии с лекарственными препаратами, содержащими серу, может образовываться сульфгемоглобин, сдвигающий кривую диссоциации оксигемоглобина вправо.

В крови плода преобладает фетальный гемоглобин (HbF), обладающий большим сродством к кислороду, чем гемоглобин взрослого. У новорожденного в эритроцитах содержится до 70% фстального гемоглобина. Гемоглобин F заменяется на НbА в течение первого полугодия жизни.

В первые часы после рождения рО 2 артериальной крови составляет около 50 мм рт. ст., а НbО 2 - 75-90%.

У пожилых людей напряжение кислорода в артериальной крови и насыщение гемоглобина кислородом постепенно снижается. Величину этого показателя рассчитывают по формуле

рO 2 = 103,5-0,42 . возраст в годах.

В связи с существованием тесной связи между насыщением кислородом гемоглобина крови и напряжением в ней кислорода был разработан метод пульсоксиметрии , получивший широкое применение в клинике. Этим методом определяют насыщение гемоглобина артериальной крови кислородом и его критические уровни, при которых напряжение кислорода в крови становится недостаточным для его эффективной диффузии в ткани и они начинают испытывать кислородное голодание (рис. 3).

Современный пульсоксиметр состоит из датчика, включающего светодиодный источник света, фотоприемника, микропроцессора и дисплея. Свет от светодиода направляется через ткань пальца кисти (стопы), мочки уха, поглощается оксигемоглобином. Непоглощенная часть светового потока оценивается фотоприемником. Сигнал фотоприемника обрабатывается микропроцессором и подается на экран дисплея. На экране отображается процентное насыщение гемоглобина кислородом, частота пульса и пульсовая кривая.

На кривой зависимости насыщения гемоглобина кислородом видно, что гемоглобин артериальной крови, опекающей из альвеолярных капилляров (рис. 3), полностью насыщенкислородом (SaO2 = 100%), напряжение кислорода в ней составляет 100 мм рт. ст. (рО2, = 100 мм рт. ст.). После диссоциации оксигсмоглобина в тканях кровь становится деоксигенированной и в смешанной венозной крови, возвращающейся в правое предсердие, в условиях покоя гемоглобин остается насыщенным кислородом на 75% (Sv0 2 = 75%), а напряжение кислорода составляет 40 мм рт. ст. (pvO2 = 40 мм рт. ст.). Таким образом, в условиях покоя ткани поглотили около 25% (≈250 мл) кислорода, высвободившегося из оксигсмоглобина после его диссоциации.

Рис. 3. Зависимость насыщения кислородом гемоглобина артериальной крови от напряжения в ней кислорода

При уменьшении всего лишь на 10% насыщения гемоглобина артериальной крови кислородом (SaO 2 , <90%), диссоциирующий в тканях оксигемоглобин не обеспечивает достаточного напряжения кислорода в артериальной крови для его эффективной диффузии в ткани и они начинают испытывать кислородное голодание.

Одной из важных задач, которая решается при постоянном измерении пульсоксиметром насыщения гемоглобина артериальной крови кислородом, является обнаружение момента, когда насыщение снижается до критического уровня (90%) и пациенту необходимо оказание неотложной помощи, направленной на улучшение доставки кислорода в ткани.

Транспорт кровью углекислого газа и его связь с кислотно-щелочным состоянием крови

Углекислый газ транспортируется кровью в формах:

  • физического растворения — 2,5-3 об%;
  • карбоксигемоглобина (НbСО 2) — 5 об%;
  • бикарбонатов (NaHCO 3 и КНСO 3) — около 50 об%.

В оттекающей от тканей крови содержится 56-58 об% СО 2 , а в артериальной — 50-52 об%. При протекании через тканевые капилляры кровь захватывает около 6 об% СО 2 , а в легочных капиллярах этот газ диффундирует в альвеолярный воздух и удаляется из организма. Особенно быстро идет обмен СО 2 , связанного с гемоглобином. Углекислый газ присоединяется к аминогруппам в молекуле гемоглобина, поэтому карбоксигемоглобин называют еще карбаминогемоглобином. Большая часть углекислого газа транспортируется в виде натриевых и калиевых солей угольной кислоты. Ускоренному распаду угольной кислоты в эритроцитах при прохождении их по легочным капиллярам способствует фермент карбоангидра- за. При рСО2 ниже 40 мм рт. ст. этот фермент катализирует распад Н 2 СO 3 на Н 2 0 и С0 2 , способствуя удалению углекислого газа из крови в альвеолярный воздух.

Накопление углекислого газа в крови свыше нормы называют гиперкапнией , а понижение гипокапнией. Гиперкаппия сопровождается сдвигом рН крови в кислую сторону. Это обусловлено тем, что углекислый газ, соединяясь с водой, образует угольную кислоту:

CO 2 + H 2 O = H 2 CO 3

Угольная кислота диссоциирует согласно закону действующих масс:

Н 2 СО 3 <-> Н + + HCO 3 - .

Таким образом, внешнее дыхание через влияние на содержание углекислого газа в крови принимает непосредственное участие в поддержании кислотно-щелочного состояния в организме. За сутки с выдыхаемым воздухом из организма человека удаляется около 15 ООО ммоль угольной кислоты. Почки удаляют приблизительно в 100 раз меньше кислот.

где рН — отрицательный логарифм концентрации протонов; рК 1 — отрицательный логарифм константы диссоциации (К 1) угольной кислоты. Для ионной среды, имеющейся в плазме, рК 1 =6,1.

Концентрацию [СО2] можно заменить напряжением [рС0 2 ]:

[С0 2 ] = 0,03 рС0 2 .

Тогда рН = 6,1 + lg / 0,03 рСО 2 .

Подставив эти значения, получим:

рН = 6,1 + lg24 / (0,03 . 40) = 6,1 + lg20 = 6,1 + 1,3 = 7,4.

Таким образом, пока соотношение / 0,03 рС0 2 равно 20, рН крови будет 7,4. Изменение этого соотношения происходит при ацидозе или алкалозе, причинами которых могут быть нарушения в системе дыхания.

Различают изменения кислотно-щелочного состояния, вызванные нарушениями дыхания и метаболизма.

Дыхательный алкалоз развивается при гипервентиляции легких, например при пребывании на высоте в горах. Недостаток кислорода во вдыхаемом воздухе приводит к возрастанию вентиляции легких, а гипервентиляция — к избыточному вымыванию из крови углекислого газа. Соотношение / рС0 2 сдвигается в сторону преобладания анионов и рН крови увеличивается. Увеличение рН сопровождается усилением выведения почками бикарбонатов с мочой. При этом в крови будет обнаруживаться меньшее, чем в норме, содержание анионов HCO 3 - или так называемый «дефицит оснований».

Дыхательный ацидоз развивается из-за накопления в крови и тканях углекислого газа, обусловленного недостаточностью внешнего дыхания или кровообращения. При гиперкапнии показатель соотношения / рСО 2 , снижается. Следовательно, снижается и рН (см. выше приведенные уравнения). Это подкисление может быть быстро устранено усилением вентиляции.

При дыхательном ацидозе почки увеличивают выведение с мочой протонов водорода в составе кислых солей фосфорной кислоты и аммония (Н 2 РО 4 - и NH 4 +). Наряду с усилением секреции протонов водорода в мочу увеличивается образование анионов угольной кислоты и усиление их реабсорбции в кровь. Содержание HCO 3 - в крови возрастает и рН возвращается к норме. Это состояние называют компенсированным дыхательным ацидозом. О его наличии можно судить по величине рН и нарастанию избытка оснований (разности между содержанием в исследуемой крови и в крови с нормальным кислотно-щелочным состоянием.

Метаболический ацидоз обусловлен поступлением в организм избытка кислот с пищей, нарушениями метаболизма или введением лекарственных препаратов. Увеличение концентрации водородных ионов в крови приводит к возрастанию активности центральных и периферических рецепторов, контролирующих рН крови и ликвора. Учащенная импульсация от них поступает к дыхательному центру и стимулирует вентиляцию легких. Развивается гипокапиия. которая несколько компенсирует метаболический ацидоз. Уровень в крови снижается и это называют дефицитом оснований.

Метаболический алкалоз развивается при избыточном приеме внутрь щелочных продуктов, растворов, лекарственных веществ, при потере организмом кислых продуктов обмена или избыточной задержке почками анионов . Дыхательная система реагирует на повышение соотношения /рС0 2 гиповентиляцией легких и повышением напряжения углекислого газа в крови. Развивающаяся гиперкапния может в определенной мере компенсировать алкалоз. Однако объем такой компенсации ограничен тем, что накопление углекислого газа в крови идет не более, чем до напряжения 55 мм рт. ст. Признаком компенсированного метаболического алкалоза является наличие избытка оснований.

Взаимосвязь между транспортом кислорода и углекислого газа кровью

Имеется три важнейших пути взаимосвязи транспорта кислорода и углекислого газа кровью.

Взаимосвязь по типу эффекта Бора (увеличение рСО-, снижает сродство гемоглобина к кислороду).

Взаимосвязь по типу эффекта Холдэна . Она проявляется в том, что при деоксигенации гемоглобина увеличивается его сродство к углекислому газу. Высвобождается дополнительное число аминогрупп гемоглобина, способных связывать углекислый газ. Это происходит в тканевых капиллярах и восстановленный гемоглобин может в больших количествах захватывать углекислый газ, выходящий в кровь из тканей. В соединении с гемоглобином транспортируется до 10% от всего переносимого кровью углекислого газа. В крови легочных капилляров гемоглобин оксигенируется, его сродство к углекислому газу снижается и около половины этой легко обмениваемой фракции углекислого газа отдастся в альвеолярный воздух.

Еще один путь взаимосвязи обусловлен изменением кислотных свойств гемоглобина в зависимости от его соединения с кислородом. Величины констант диссоциации этих соединений в сопоставлении с угольной кислотой имеют такое соотношение: Hb0 2 > Н 2 С0 3 > Нb. Следовательно, НbО2 обладает более сильными кислотными свойствами. Поэтому после образования в легочных капиллярах он забирает катионы (К+) от бикарбонатов (КНСО3) в обмен на ионы Н + . В результате этого образуется H 2 CO 3 При повышении концентрации угольной кислоты в эритроците фермент карбоангидраза начинает разрушать ее с образованием СО 2 и Н 2 0. Углекислый газ диффундирует в альвеолярный воздух. Таким образом, оксигенация гемоглобина в легких способствует разрушению бикарбонатов и удалению аккумулированного в них углекислого газа из крови.

Превращения, описанные выше и происходящие в крови легочных капилляров, можно записать в виде последовательных символических реакций:

Деоксигенация Нb0 2 в тканевых капиллярах превращает его в соединение с меньшими, чем у Н 2 С0 3 , кислотными свойствами. Тогда вышеприведенные реакции в эритроците текут в обратном направлении. Гемоглобин выступает поставщиком ионов К" для образования бикарбонатов и связывания углекислого газа.

Транспорт газов кровью

Переносчиком кислорода от легких к тканям и углекислого газа от тканей к легким является кровь. В свободном (растворенном) состоянии переносится лишь небольшое количество этих газов. Основное количество кислорода и углекислого газа переносится в связанном состоянии.

Транспорт кислорода

Кислород, растворяющийся в плазме крови капилляров малого круга кровообращения, диффундирует в эритроциты, сразу связывается с гемоглобином, образуя оксигемоглобин. Скорость связывания кислорода велика: время полунасыщения гемоглобина кислородом около 3 мс. Один грамм гемоглобина связывает 1,34 мл кислорода, в 100 мл крови 16 г гемоглобина и, следовательно, 19,0 мл кислорода. Эта величина называется кислородной емкостью крови (КЕК).

Превращение гемоглобина в оксигемоглобин определяется напряжением растворенного кислорода. Графически эта зависимость выражается кривой диссоциации оксигемоглобина (рис. 6.3).

На рисунке видно, что даже при небольшом парциальном давлении кислорода (40 мм рт. ст.) с ним связывается 75-80% гемоглобина.

При давлении 80-90 мм рт. ст. гемоглобин почти полностью насыщается кислородом.

Рис. 4. Кривая диссоциации оксигемоглобина

Кривая диссоциации имеет S-образную форму и состоит из двух частей — крутой и отлогой. Отлогая часть кривой, соответствующая высоким (более 60 мм рт. ст.) напряжениям кислорода, свидетельствует о том, что в этих условиях содержание оксигемоглобина лишь слабо зависит от напряжения кислорода и его парциального давления во вдыхаемом и альвеолярном воздухе. Верхняя отлогая часть кривой диссоциации отражает способность гемоглобина связывать большие количества кислорода, несмотря на умеренное снижение его парциального давления во вдыхаемом воздухе. В этих условиях ткани достаточно снабжаются кислородом (точка насыщения).

Крутая часть кривой диссоциации соответствует напряжению кислорода, обычному для тканей организма (35 мм рт. ст. и ниже). В тканях, поглощающих много кислорода (работающие мышцы, печень, почки), оке и гемоглобин диссоциирует в большей степени, иногда почти полностью. В тканях, в которых интенсивность окислительных процессов мала, большая часть оксигемоглобина не диссоциирует.

Свойство гемоглобина — легко насыщаться кислородом даже при небольших давлениях и легко его отдавать — очень важно. Благодаря легкой отдаче гемоглобином кислорода при снижении его парциального давления обеспечивается бесперебойное снабжение тканей кислородом, в которых вследствие постоянного потребления кислорода его парциальное давление равно нулю.

Распад оксигемоглобина на гемоглобин и кислород увеличивается с повышением температуры тела (рис. 5).

Рис. 5. Кривые насыщения гемоглобина кислородом при разных условиях:

А — в зависимости от реакции среды (рН); Б — от температуры; В — от содержания солей; Г — от содержания углекислого газа. По оси абцисс — парциальное давление кислорода (в мм рт. ст.). по оси ординат — степень насыщения (в %)

Диссоциация оксигемоглобина зависит от реакции среды плазмы крови. С увеличением кислотности крови возрастает диссоциация оксигемоглобина (рис. 5, А).

Связывание гемоглобина с кислородом в воде осуществляется быстро, но полного его насыщения не достигается, как и не происходит полной отдачи кислорода при снижении его парциального
давления. Более полное насыщение гемоглобина кислородом и полная его отдача при понижении напряжения кислорода происходят в растворах солей и в плазме крови (см. рис. 5, В).

Особое значение в связывании гемоглобина с кислородом имеет содержание углекислого газа в крови: чем больше его содержание в крови, тем меньше связывается гемоглобина с кислородом и тем быстрее происходит диссоциация оксигемоглобина. На рис. 5, Г показаны кривые диссоциации оксигемоглобина при разном содержании углекислого газа в крови. Особенно резко понижается способность гемоглобина соединяться с кислородом при давлении углекислого газа, равном 46 мм рт. ст., т.е. при величине, соответствующей напряжению углекислого газа в венозной крови. Влияние углекислого газа на диссоциацию оксигемоглобина очень важно для переноса газов в легких и тканях.

В тканях содержится большое количество углекислого газа и других кислых продуктов распада, образующихся в результате обмена веществ. Переходя в артериальную кровь тканевых капилляров, они способствуют более быстрому распаду оксигемоглобина и отдаче кислорода тканям.

В легких же по мере выделения углекислого газа из венозной крови в альвеолярный воздух с уменьшением содержания углекислого газа в крови увеличивается способность гемоглобина соединяться с кислородом. Тем самым обеспечивается превращение венозной крови в артериальную.

Транспорт углекислого газа

Известны три формы транспорта двуокиси углерода:

  • физически растворенный газ — 5-10%, или 2,5 мл/100 мл крови;
  • химически связанный в бикарбонатах: в плазме NaHC0 3 , в эритроцитах КНСО, — 80-90%, т.е. 51 мл/100 мл крови;
  • химически связанный в карбаминовых соединениях гемоглобина — 5-15%, или 4,5 мл/100 мл крови.

Углекислый газ непрерывно образуется в клетках и диффундирует в кровь тканевых капилляров. В эритроцитах он соединяется с водой и образует угольную кислоту. Этот процесс катализируется (ускоряется в 20 000 раз) ферментом карбоангидразой. Карбоангидраза содержится в эритроцитах, в плазме крови ее нет. Поэтому гидратация углекислого газа происходит практически только в эритроцитах. В зависимости от напряжения углекислого газа карбоангидраза катализируется с образованием угольной кислоты, так и расщеплением ее на углекислый газ и воду (в капиллярах легких).

Часть молекул углекислого газа соединяется в эритроцитах с гемоглобином, образуя карбогемоглобин.

Благодаря указанным процессам связывания напряжение углекислого газа в эритроцитах оказывается невысоким. Поэтому все новые количества углекислого газа диффундируют внутрь эритроцитов. Концентрация ионов НС0 3 - , образующихся при диссоциации солей угольной кислоты, в эритроцитах возрастает. Мембрана эритроцитов обладает высокой проницаемостью для анионов. Поэтому часть ионов НСО 3 - переходит в плазму крови. Взамен ионов НСО 3 - в эритроциты из плазмы входят ионы СI - , отрицательные заряды которых уравновешиваются ионами K+. В плазме крови увеличивается количество бикарбоната натрия (NaНСО 3 -).

Накопление ионов внутри эритроцитов сопровождается повышением в них осмотического давления. Поэтому объем эритроцитов в капиллярах большого круга кровообращения несколько увеличивается.

Для связывания большей части углекислого газа исключительно большое значение имеют свойства гемоглобина как кислоты. Оксигемоглобин имеет константу диссоциации в 70 раз большую, чем дезоксигемоглобин. Оксигемоглобин — более сильная кислота, чем угольная, а дезоксигемоглобин — более слабая. Поэтому в артериальной крови оксигемоглобин, вытеснивший ионы К + из бикарбонатов, переносится в виде соли КНbO 2 . В тканевых капиллярах КНbО 2 , отдает кислород и превращается в КНb. Из него угольная кислота как более сильная вытесняет ионы К + :

КНb0 2 + H 2 CO 3 = КНb + 0 2 + КНСО 3

Таким образом, превращение оксигемоглобина в гемоглобин сопровождается увеличением способности крови связывать углекислый газ. Это явление носит название эффекта Холдейна. Гемоглобин служит источником катионов (К+), необходимых для связывания угольной кислоты в форме бикарбонатов.

Итак, в эритроцитах тканевых капилляров образуется дополнительное количество бикарбоната калия, а также карбогемоглобин, а в плазме крови увеличивается количество бикарбоната натрия. В таком виде углекислый газ переносится к легким.

В капиллярах малого круга кровообращения напряжение углекислого газа снижается. От карбогемоглобина отщепляется СО2,. Одновременно происходит образование оксигемоглобина, увеличивается его диссоциация. Оксигемоглобин вытесняет калий из бикарбонатов. Угольная кислота в эритроцитах (в присутствии карбоангидразы) быстро разлагается на воду и углекислый газ. Ионы НСОГ входят в эритроциты, а ионы СI - входят в плазму крови, где уменьшается количество бикарбоната натрия. Углекислый газ диффундирует в альвеолярный воздух. Схематически все эти процессы представлены на рис. 6.

Рис. 6. Процессы, происходящие в эритроците при поглощении или отдаче кровью кислорода и углекислого газа

Газообмен 02 и СО2 через альвеолярно-капиллярную мембра­ну происходит с помощью диффузии, которая осуществляется в два этапа. На первом этапе диффузионный перенос газов проис­ходит через аэрогематический барьер, на втором - происходит связывание газов в крови легочных капилляров, объем которой оставляет 80-150 мл при толщине слоя крови в капиллярах всего 5-8 мкм. Плазма крови практически не препятствует диффузии газов, в отличие от мембраны эритроцитов.

Структура легких создает благоприятные условия для газооб­мена: дыхательная зона каждого легкого содержит около 300 млн альвеол и примерно такое же число капилляров, имеет площадь 40-140 м 2 при толщине аэрогематического барьера всего 0,3-1,2 мкм.

Особенности диффузии газов количественно харктеризуются через диффузионную способность легких. Для 02 диффузион­ная способность легких - это объем газа, переносимого из альве­ол в кровь в 1 минуту при градиенте альвеолярно-капиллярного давления газа, равном 1 мм рт.ст.

Движение газов происходит в результате разницы парциаль­ных давлений. Парциальное давление - это та часть давления, которую составляет данный газ из общей смеси газов. Понижен­ное давление 0„ в ткани способствует движению кислорода к ней. Для СО2 градиент давления направлен в обратную сторону, и СО с выдыхаемым воздухом уходит в окружающую среду. Изучение физиологии дыхания фактически сводится к изучению этих гра­диентов и того, как они поддерживаются.

Градиент парциального давления кислорода и углекислого га­за это сила, с которой молекулы этих газов стремятся проникнуть через альвеолярную мембрану в кровь. Парциальное напряжение газа в крови или тканях - это сила, с которой молекулы раство­римого газа стремятся выйти в газовую среду.

На уровне моря атмосферное давление составляет в среднем 760 мм рт.ст., а процентное содержание кислорода - около 21%. В этом случае р02 в атмосфере составляет: 760 х 21/100=159 мм рт.ст. При вычислении парциального давления газов в альвеоляр­ном воздухе следует учитывать, что в этом воздухе присутствуют пары воды (47 мм рт.ст.). Поэтому это число вычитают из значения

атмосферного давления, и на долю парциального давления газов приходится (760 - 47) == 713 мм рт.ст. При содержании кислорода в альвеолярном воздухе, равном 14 %, его парциальное давление бу­дет 100 мм рт. ст. При содержании двуокиси углерода, равном 5,5%, парциальное давление Сопоставит примерно 40 мм рт.ст.

В артериальной крови парциальное напряжение кислорода достигает почти 100 мм рт.ст., в венозной крови - около 40 мм рт.ст., а в тканевой жидкости, в клетках - 10 - 15 мм рт.ст. Напря­жение углекислого газа в артериальной крови составляет около 40 мм рт.ст., в венозной - 46 мм рт.ст., а в тканях - до 60 мм рт.ст.


Газы в крови находятся в двух состояниях: физически раство­ренном и химически связанном. Растворение происходит в соот­ветствии с законом Генри, согласно которому количество газа, растворенного в жидкости, прямо пропорционально парциально­му давлению этого газа над жидкостью. На каждую единицу пар­циального давления в 100 мл крови растворяется 0,003 мл 02, или 3 мл/л крови.

Каждый газ имеет свой коэффициент растворимости. При температуре тела растворимость СО2 в 25 раз больше, чем 02. Из-за хорошей растворимости углекислоты в крови и тканях СО2 пе­реносится в 20 раз легче, чем 02. Стремление газа переходить из жидкости в газовую фазу называют напряжением газа. В обыч­ных условиях в 100 мл крови находится в растворенном состоя­нии всего 0,3 мл 02 и 2,6 мл СО2. Такие величины не могут обеспе­чить запросы организма в 02.

Газообмен кислорода между альвеолярным воздухом и кровью происходит благодаря наличию концентрационного градиента 02 между этими средами. Транспорт кислорода начинается в капилля­рах легких, где основная масса поступающего в кровь 02 вступает в химическую связь с гемоглобином. Гемоглобин способен избира­тельно связывать 02 и образовывать оксигемоглобин (НвО2). Один грамм гемоглобина связывает 1,36 - 1,34 мл О 2 а в 1 литре крови со­держится 140-150 г гемоглобина. На 1 грамм гемоглобина прихо­дится 1,39 мл кислорода. Следовательно, в каждом литре крови максимально возможное содержание кислорода в химически свя­занной форме составит 190 - 200 мл 02, или 19 об% - это кислород­ная емкость крови. Кровь человека содержит примерно 700-800 г гемоглобина и может связывать 1 л кислорода.

Под кислородной емкостью крови понимают количество О 2которое связывается кровью до полного насыщения гемоглобина. Изменение концентрации гемоглобина в крови, например, при анемиях, отравлениях ядами изменяет ее кислородную емкость. При рождении в крови у человека более высокие значения кисло­родной емкости и концентрации гемоглобина. Насыщение крови кислородом выражает отношение количества связанного кисло­рода к кислородной емкости крови, т.е. под насыщением крови 0^

подразумевается процент оксигемоглобина по отношению к име­ющемуся в крови гемоглобину. В обычных условиях насыщение 0^ составляет 95-97%. При дыхании чистым кислородом насы­щение крови 0^ достигает 100%, а при дыхании газовой смесью с низким содержанием кислорода процент насыщения падает. При 60-65% наступает потеря сознания.

Зависимость связывания кислорода кровью от его парциаль­ного давления можно представить в виде графика, где по оси аб­сцисс откладывается р02 в крови, по ординате - насыщение ге­моглобина кислородом. Этот график - кривая диссоциации окси­гемоглобина, или сатурационная кривая, показывает, какая доля гемоглобина в данной крови связана с 02 при том или ином его парциальном давлении, а какая - диссоциирована, т.е. свободна от кислорода. Кривая диссоциации имеет S-образную форму. Плато кривой характерно для насыщенной 02 (сатурированной) артериальной крови, а крутая нисходящая часть кривой - веноз­ной, или десатурированной, крови в тканях (рис. 21).

Рис. 21. Кривые диссоциации оксигемоглобина цельной крови при различных рН крови (Л) и при изменении температуры (Б}

Кривые 1-6 соответствуют 0°, 10°, 20°, 30°, 38° и 43°С

Сродство кислорода к гемоглобину и способность отдавать 02 в тканях зависит от метаболических потребностей клеток орга­низма и регулируется важнейшими факторами метаболизма тка­ней, вызывающими смещение кривой диссоциации. К этим фак­торам относятся: концентрация водородных ионов", температура, парциальное напряжение углекислоты и соединение, которое на­капливается в эритроцитах - это 2,3-дифосфоглицератфосфат (ДФГ). Уменьшение рН крови вызывает сдвиг кривой диссоциации вправо, а увеличение рН крови - сдвиг кривой влево. Вслед­ствие повышенного содержания СО2 в тканях рН также меньше, чем в плазме крови. Величина рН и содержание СО2 в тканях ор­ганизма изменяют сродство гемоглобина к О 2 Их влияние на кри­вую диссоциации оксигемоглобина называется эффектом Бора (Х.Бор, 1904). При повышении концентрации водородных ионов и парциального напряжения СО2 в среде сродство гемоглобина к кислороду снижается. Этот «эффект» имеет важное приспособительное значение: СО2 в тканях поступает в капилляры, поэтому кровь при том же р02 способна освободить больше кислорода. Образующийся при расщеплении глюкозы метаболит 2,3-ДФГ также снижает сродство гемоглобина к кислороду.

На кривую диссоциации оксигемоглобина оказывает влияние также и температура. Рост температуры значительно увеличивает скорость распада оксигемоглобина и уменьшает сродство гемо­глобина к О 2 Увеличение температуры в работающих мышцах способствует освобождению О 2 Связывание 02 гемоглобином снижает сродство его аминогрупп к СО2 (эффект Холдена). Диф­фузия СО2 из крови в альвеолы обеспечивается за счет поступле­ния растворенного в плазме крови СО2 (5- 10%), из гидрокарбо­натов (80-90%) и, наконец, из карбаминовых соединений эрит­роцитов (5- 15%), которые способны диссоциировать.

Углекислый газ в крови находится в трех фракциях: физичес­ки растворенный, химически связанный в виде бикарбонатов и химически связанный с гемоглобином в виде карбогемоглобина. В венозной крови углекислого газа содержится всего 580 мл. При этом на долю физически растворенного газа приходится 25 мл, на долю карбогемоглобина - около 45 мл, на долю бикарбонатов - 510 мл (бикарбонатов плазмы - 340 мл, эритроцитов - 170 мл). В артериальной крови содержание угольной кислоты меньше.

От парциального напряжения физически растворенного уг­лекислого газа зависит процесс связывания СО2 кровью. Углекис­лота поступает в эритроцит, где имеется фермент карбоангидраза, который может в 10 000 раз увеличить скорость образования угольной кислоты. Пройдя через эритроцит, угольная кислота превращается в бикарбонат и переносится к легким.

Эритроциты переносят в 3 раза больше СО2, чем плазма. Бел­ки плазмы составляют 8 г на 100 см 3 крови, гемоглобина же содер­жится в крови 15 г на 100 см 3 . Большая часть СО2 транспортирует­ся в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена СО2.

Кроме физически растворенного в плазме крови молекуляр­ного СО2 из крови в альвеолы легких диффундирует СО 2 кото­рый высвобождается из карбаминовых соединений эритроцитов благодаря реакции окисления гемоглобина в капиллярах легкого, а также из гидрокарбонатов плазмы крови в результате их быст­

рой диссоциации с помощью содержащегося в эритроцитах фер­мента карбоангидразы. Этот фермент в плазме отсутствует. Би­карбонаты плазмы для освобождения СО2 должны сначала про­никнуть в эритроциты, чтобы подвергнуться действию карбоан­гидразы. В плазме находится бикарбонат натрия, а в эритроци­тах - бикарбонат калия. Мембрана эритроцитов хорошо прони­цаема для СО2, поэтому часть СО2 быстро диффундирует из плаз­мы внутрь эритроцитов. Наибольшее количество бикарбонатов плазмы крови образуется при участии карбоангидразы эритро­цитов.

Следует отметить, что процесс выведения СО2 из крови в аль­веолы легкого менее лимитирован, чем оксигенация крови, так как молекулярный СО2 легче проникает через биологические мембраны, чем 0^.

Различные яды, ограничивающие транспорт 0^, такие как СО, нитриты, ферроцианиды и многие другие, практически не действуют на транспорт СО2. Блокаторы карбоангидразы также никогда полностью не нарушают образование молекулярного СО2. И наконец, ткани обладают большой буферной емкостью, но не защищены от дефицита О 2 Выведение СО2 легкими может на­рушиться при значительном уменьшении легочной вентиляции (гиповентиляции) в результате заболевания легких, дыхательных путей, интоксикации или нарушении регуляции дыхания. За­держка СО2 приводит к дыхательному ацидозу - уменьшению концентрации бикарбонатов, сдвигу рН крови в кислую сторону. Избыточное выведение СО2 при гипервентиляции во время ин­тенсивной мышечной работы, при восхождении на большие вы­соты может вызвать дыхательный алкалоз, сдвиг рН крови в ще­лочную сторону.

Почти во всех жидкостях может содержаться некоторое количество физически растворенных газов. Содержание растворенного газа в жидкости зависит от его парциального давления.

Хотя содержание в крови О 2 и СО 2 в физически растворенном состоянии относительно невелико, это состояние играет существенную роль в жизнедеятельности организма. Для того, чтобы связаться с теми или иными веществами, дыхательные газы сначала должны быть доставлены к ним в физически растворенном виде. Таким образом, при диффузии в ткани или кровь каждая молекула О 2 или СО 2 определенное время пребывает в состоянии физического растворения.

Большая часть кислорода переносится кровью в виде химического соединения с гемоглобином. 1 моль гемоглобина может связать до 4 молей кислорода, а 1 грамм гемоглобина – 1,39 мл кислорода. При анализе газового состава крови получают несколько меньшую величину (1,34 – 1,36 мл О 2 на 1 г. Hb). Это обусловлено тем, что небольшая часть гемоглобина находится в неактивном виде. Таким образом, ориентировочно можно считать, что in vivo 1г Hb связывает 1,34 мл О 2 (число Хюфнера).

Исходя из числа Хюфнера, можно, зная содержание гемоглобина, вычислить кислородную емкость крови: [О 2 ] макс = 1,34 мл О 2 на 1 г Hb; 150 г Hb на 1 л крови = 0,20 л О 2 на 1 л крови. Однако, такое содержание кислорода в крови может достигаться лишь в том случае, если кровь контактирует с газовой смесью с высоким содержанием кислорода (РО 2 = 300 мм рт.ст.), поэтому в естественных условиях гемоглобин оксигенируется не полностью.

Реакция, отражающая соединения кислорода с гемоглобином подчиняется закону действующих масс. Это означает, что отношение между количеством гемоглобина и оксигемоглобина зависит от содержания физически растворенного О 2 в крови; последнее же пропорционально напряжению О 2 . Процентное отношение оксигемоглобина к общему содержанию гемоглобина называется насыщением гемоглобина кислородом. В соответствии с законом действующих масс насыщение гемоглобина кислородом зависит от напряжения О 2 . Графически эту зависимость отражает так называемая кривая диссоциации оксигемоглобина . Эта кривая имеет S – образную форму (Рис. 29.).

Наиболее простым показателем, характеризующим расположение этой кривой, служит так называемое напряжение полунасыщения РО 2 , т.е. такое напряжение О 2 , при котором насыщение гемоглобина кислородом составляет 50 %. В норме РО 2 артериальной крови составляет около 26 мм рт.ст.

Рис. 29. Кривые диссоциации оксигемоглобина при различных рН крови.

Конфигурация кривой диссоциации оксигемоглобина важна для переноса кислорода кровью. В процессе поглощения кислорода в легких напряжение О 2 в крови приближается к парциальному давлению этого газа в альвеолах. У молодых людей РО 2 артериальной крови составляет около 95 мм рт.ст. При таком напряжении насыщение гемоглобина кислородом равно примерно 97 %. С возрастом (и в еще большей степени при заболеваниях легких) напряжение О 2 в артериальной крови может значительно снижаться, однако, поскольку кривая диссоциации оксигемоглобина в правой части почти горизонтальна, насыщение крови кислородом уменьшается ненамного. Так, даже при падении РО 2 в артериальной крови до 60 мм рт.ст. насыщение гемоглобина кислородом равно 90 %. Таким образом, благодаря тому, что области высоких напряжений кислорода соответствует горизонтальный участок кривой диссоциации оксигемоглобина, насыщение артериальной крови кислородом сохраняется на высоком уровне даже при существенных сдвигах РО 2 .

Крутой наклон среднего участка кривой диссоциации оксигемоглобина свидетельствует о благоприятной ситуации для отдачи кислорода тканям. В состоянии покоя РО 2 в области венозного конца капилляра равно приблизительно 40 мм рт.ст., что соответствует примерно 73 % насыщения. Если в результате увеличения потребления кислорода его напряжение в венозной крови падает лишь на 5 мм рт.ст., то насыщение гемоглобина кислородом снижается на 75 %: высвобождающийся при этом О 2 может быть сразу же использован для процессов метаболизма.

Несмотря на то, что конфигурация кривой диссоциации оксигемоглобина обусловлена главным образом химическими свойствами гемоглобина, существует и ряд других факторов, влияющих на сродство крови к кислороду. Как правило, все эти факторы смещают кривую, увеличивая или уменьшая ее наклон, но не изменяя при этом ее S-образную форму. К таким факторам относятся температура, рН, напряжение СО 2 и некоторые другие факторы, роль которых возрастает в патологических условиях.

Равновесие реакции оксигенации гемоглобина зависит от температуры. При понижении температуры наклон кривой диссоциации оксигемоглобина увеличивается, а при ее повышении – снижается. У теплокровных животных этот эффект проявляется только при гипотермии или лихорадочном состоянии.

Форма кривой диссоциации оксигемоглобина в значительной степени зависит от содержания в крови ионов Н + . При снижении рН, т.е. закислении крови, сродство гемоглобина к кислороду уменьшается, и кривая диссоциации оксигемоглобина называется эффектом Бора.

РН крови тесно связано с напряжением СО 2 (РСО 2): чем РСО 2 выше, тем рН ниже. Увеличение напряжения в крови СО 2 сопровождается снижением сродства гемоглобина к кислороду и уплощение кривой диссоциации НbО 2 . Эту зависимость также называют эффектом Бора, хотя при подобном количественном анализе было показано, что влияние СО 2 на форму кривой диссоциации оксигемоглобина нельзя объяснить только изменением рН. Очевидно, сам углекислый газ оказывает на диссоциацию оксигемоглобина «специфический эффект».

При ряде патологических состояний наблюдаются изменения процесса транспорта кислорода кровью. Так, есть заболевания (например, некоторые вида анемий), которые сопровождаются сдвигами кривой диссоциации оксигемоглобина вправо (реже – влево). Причины таких сдвигов окончательно не раскрыты. Известно, что на форму и расположение кривой диссоциации оксигемоглобина оказывают выраженное влияние некоторые фосфорорганические соединения, содержание которых в эритроцитах при патологии может изменяться. Главным таким соединением является 2,3-дифосфоглицерат – (2,3 – ДФГ). Сродство гемоглобина к кислороду зависит также от содержания в эритроцитах катионов. Необходимо отметить также влияние патологических сдвигов рН: при алкалозе поглощение кислорода в легких в результате эффекта Бора увеличивается, но отдача его тканям затрудняется; а при ацидозе наблюдается обратная картина. Наконец, значительный сдвиг кривой влево имеет место при отравлении угарным газом.

Транспорт СО 2 кровью. Формы транспорта. Значение карбоангидразы.

Двуокись углерода – конечный продукт окислительных обменных процессов в клетках – переносится с кровью к легким и удаляется через них во внешнюю среду. Так же как и кислород, СО 2 может переноситься как в физически растворенном виде, так и в составе химических соединений. Химические реакции связывания СО 2 несколько сложнее, чем реакции присоединения кислорода. Это обусловлено тем, что механизмы, отвечающие за транспорт СО 2 должны одновременно обеспечивать поддержание постоянства кислотно-щелочного равновесия крови и тем самым внутренней среды организма в целом.

Напряжение СО 2 в артериальной крови, поступающей в тканевые капилляры составляет 40 мм рт.ст. В клетках же, расположенных около этих капилляров, напряжение СО 2 значительно выше, так как это вещество постоянно образуется в результате метаболизма. В связи с этим физически растворенный СО 2 переносится по градиенту напряжения из тканей в капилляры. Здесь некоторое количество углекислого газа остается в состоянии физического растворения, но большая часть СО 2 претерпевает ряд химических превращений. Прежде всего происходит гидратация молекул СО 2 с образованием угольной кислоты.

В плазме крови эта реакция протекает очень медленно; в эритроците же она ускоряется примерно в 10 тыс. раз. Это связано с действием фермента карбоангидразы. Поскольку этот фермент присутствует только в клетках, практически все молекулы СО 2 , участвующие в реакции гидратации, должны сначала поступить в эритроциты.

Следующая реакция в цепи химических превращений СО 2 заключается в диссоциации слабой кислоты Н 2 СО 3 на ионы бикарбоната и водорода.

Накопление НСО 3 - в эритроците приводит к тому, что между его внутренней средой и плазмой крови создается диффузионный градиент. Ионы НСО 3 - могут передвигаться по этому градиенту лишь в том случае, если при этом не будет нарушаться равновесное распределение электрических зарядов. В связи с этим одновременно с выходом каждого иона НСО 3 - должен происходить либо выход из эритроцита одного катиона, либо вход одного аниона. Поскольку мембрана эритроцита практически не проницаема для катионов, но сравнительно легко пропускает небольшие анионы, взамен НСО 3 - в эритроцит поступают ионы Сl - . Этот обменный процесс называется хлоридным сдвигом.

СО 2 может связываться также путем непосредственного присоединения к аминогруппам белкового компонента гемоглобина. При этом образуется так называемая карбаминова связь.

Гемоглобин, связанный с СО 2 , называется карбогемоглобином.

Зависимость содержания СО 2 от степени оксигенации гемоглобина называется эффектом Холдейна. Данный эффект частично обусловлен различной способностью оксигемоглобина и дезоксигемоглобина к образованию карбаминовой связи.

РЕГУЛЯЦИЯ ДЫХАНИЯ

Регуляцию дыхания можно определить как приспособление внешнего дыхания к потребностям организма. Главное в регуляции дыхания – обеспечить смену дыхательных фаз.

Режим смены дыхательных фаз должен быть адекватен метаболическим потребностям организма. Так, при физической работе скорость поглощения кислорода и удаления углекислого газа должна возрастать в несколько раз по сравнению с покоем. Для этого необходимо увеличить вентиляцию легких. Увеличение минутного объема дыхания может быть достигнуто путем повышения частоты и глубины дыхания. Регуляция дыхания должна обеспечивать наиболее экономичное соотношение между этими двумя параметрами. Кроме того, при осуществлении некоторых рефлексов (глотание, кашель, чихание) и при определенных видах деятельности (речь, пение и т.д.), характер дыхания должен оставаться более или менее постоянным. Учитывая все это разнообразие запросов организма для оптимального функционирования дыхательной системы необходимы сложные регуляторные механизмы.

В системе управления дыханием можно выделить два основных уровня регуляции:

1. Саморегуляторный уровень – включает дыхательный центр посредством активации механорецепторов легких, дыхательных мышц, центральных и периферических хеморецепторов. Данный уровень регуляции осуществляет поддержание постоянства газового состава артериальной крови.

2. Регуляторный, корректирующий уровень – включает сложные поведенческие условные и безусловные акты. На этом уровне регуляции происходят процессы, приспосабливающие дыхание к изменяющимся условиям окружающие среды и жизнедеятельности организма.

Саморегуляция дыхания, дыхательный центр .

Выявление структур мозга, отвечающих за акты вдоха и выдоха, производилось путем перерезки и разрушения мозговых структур.

Было установлено, что отделение головного мозга от спинного приводит к полной остановке дыхания.

А.Н.Миславский (1885) показал, что разрушение медиальной части продолговатого мозга в нижнем углу ромбовидной ямки приводит к полной остановке дыхания.

Люмсден (1923) показал, что в варолиевом мосту также есть скопления нейронов, разрушение которых нарушает паттерн дыхания. Он ввел понятия о пневмотоксическом и апнейстическом центрах варолиевого моста.

Пневмотоксический центр (нейроны, ответственные за смену вдоха на выдох) – ростральные отделы варолиевого моста. При их разрушении дыхательные циклы становятся нерегулярными. Если одновременно перерезать афферентные волокна вагуса, то возникает апнейстическое дыхание (длительный вдох, короткий выдох, снова длительный вдох).

Если разрушить ядра, расположенные в средней и каудальной областях варолиевого моста (апнейстический центр, нейроны которого способствуют быстрому переходу выдоха на вдох), апнейзис исчезает. Он исчезает также при отделении продолговатого мозга от варолиевого моста. В этих случаях возникает гаспинг – редкие судорожные вдохи.

Теория Питтса:

В медиальной части продолговатого мозга расположен дыхательный центр, имеющий инспираторный (вдоха) и экспирационный (выдоха) отделы.

Акт вдоха возникает в результате возбуждения нейронов инспираторного отдела, которые посылают импульсы к α-мотонейронам дыхательной мускулатуры, в пневмотоксический центр и в экспираторный отдел. Это вызывает торможение нейронов инспираторного отдела и возбуждение экспираторного – возникает выдох. Возбужденные нейроны экспираторного отдела посылают сигнал в пневмотоксический центр (чтобы он затормозил экспиратоные нейроны и активировал инспираторные) и к инспираторным нейронам. И т.д.

Одновременно на состояние нейронов дыхательного центра влияет поток импульсов от хеморецепторов и механорецепторов, благодаря чему происходит регуляция частоты и глубины дыхания (т.е. вентиляция легких в соответствии с запросами организма).

Однако при исследовании электрической активности дыхательных нейронов эта гипотеза потерпела неудачу.

Было показано, что дыхательные нейроны продолговатого мозга в нижнем углу ромбовидной ямки расположены латерально. В медиальной области (разрушение которой вызывало остановку дыхания) – нейроны, обрабатывающие афферентную информацию, идущую к дыхательным нейронам, а также, вероятно, аксоны дыхательных нейронов.

В продолговатом мозге имеется 2 скопления дыхательных нейронов: одно в дорсальной части, недалеко от одиночного ядра - дорсальная дыхательная группа (ДДГ), другое расположено вентральнее, вблизи от двойного ядра – вентральная дыхательная группа (ВДГ).

ДДГ – 2 класса нейронов – инспираторные Ia и Ib. При вдохе возбуждаются оба класса этих нейронов, но выполняют разные задачи:

Инспираторные Ia-нейроны активируют α-мотонейроны диафрагмальной мышцы, и, одновременно, посылают сигналы к инспираторным нейронам ВДГ, которые, в свою очередь, возбуждают α-мотонейроны остальных инспираторных мышц;

Инспираторные Ib-нейроны, возможно с помощью вставочных нейронов, запускают процесс торможения Ia-нейронов.

В ВДГ 2 типа нейронов – инспираторные и экспираторные нейроны (активируют экспираторные скелетные мышцы).

Среди популяций инспираторных и экспираторных нейронов были выделены ранние (возбуждаются в начале вдоха или выдоха) поздние (в конце) и постоянные (на всем протяжении вдоха или выдоха).

Т.е. в продолговатом мозге нет четкого деления на инспираторный и экспираторный отделы, а есть скопления дыхательных нейронов с определенной функцией.

Дыхательные нейроны варолиевого моста .

Пневмотаксический центр – инспираторно-экспираторные нейроны (возбуждаются в конце вдоха, начале выдоха) и экспираторно-инспираторные (в коце выдоха, начале вдоха). Для активности этих нейронов необходим поток импульсов от механорецепторов легких по афферентным волокнам вагуса.

Центр апнейзиса : в средней области находятся преимущественно инспираторно-экспираторные нейроны, а в каудальной области – преимущественно экспираторно-инспираторные.

Совокупность дыхательных нейронов продолговатого мозга и моста в последнее время принято называть центральным механизмом дыхания (ЦМД).

В основе представлений о функционировании ЦМД лежит представление Брэдли (1975) о наличии в мозге 2-х нейронных блоков: 1) генератора центральной инспираторной активности (ЦИА); 2) механизма выключения инспирации.

Генератор ЦИА представлен инспираторными нейронами типа Ia, локализованными в ДДГ продолговатого мозга. Инспираторные нейроны возбуждаются при постоянном поступлении ритмических импульсов с центральных и периферических хеморецепторов. Активность данных рецепторов находится в прямой зависимости от содержания в крови кислорода и углекислого газа (периферические хеморецепторы) и концентрации протонов в ликворе (центральные хеморецепторы).

Потоки импульсов от α- инспираторных нейронов устремляются к ядрам дыхательных мышц спинного мозга, и, активируя их, вызывают сокращение диафрагмы и увеличение объема грудной клетки, а также возбуждают β – инспираторные нейроны. Одновременно, в процессе увеличения объема грудной клетки, нарастают потоки импульсов от механорецепторов легких на β – нейроны. Предполагают, что β – инспираторные нейроны возбуждают инспираторно – тормозящие нейроны, замыкающиеся на α – инспираторных нейронах (механизм выключения инспирации). Как следствие происходит прекращение вдоха и наступает выдох.

Феномен раздражения рецепторов растяжения легких и прекращение вдоха получило название – инспираторно-тормозящий рефлекс Геринга и Брейера . Напротив, если существенно уменьшить объем легких, то произойдет глубокий вдох. Дуга этого рефлекса начинается от рецепторов растяжений легочной паренхимы (подобные рецепторы обнаружение в трахее, бронхах и бронхиолах). Некоторые из этих рецепторов реагируют на степень растяжения легочной ткани, другие только при уменьшении или увеличении растяжения (независимо от степени). Афферентные волокна от рецепторов растяжения легких идут в составе блуждающих нервов, а эфферентное звено представлено двигательными нервами, идущими к дыхательной мускулатуре. Физиологическое значение рефлекса Геринга-Брейера состоит в ограничении дыхательных экскурсий, благодаря рефлексу достигается соответствие глубины дыхания сиюминутным условиям функционирования организма, работа дыхательной системы совершается более экономично. Кроме того, рефлекс препятствует перерастяжению легких.

Уменьшение при вдохе объема легких снижает поток импульсов с механорецепторов на β – инспираторные нейроны и вновь наступает вдох.

Принудительное увеличение времени выдоха (например, при раздувании легких в период экспирации) продлевает время возбуждения рецепторов растяжения легких, и как следствие, задерживает наступление следующего вдоха – экспираторно-облегчающий рефлекс Геринга-Брейера .

Таким образом, чередование вдоха и выдоха происходит по принципу отрицательной обратной связи.

И о . Сегодня вы узнаете о том, как транспортируются газы в нашей крови.

Переносчиком кислорода от легких к тканям и углекислого газа от тканей к легким является кровь. В свободном (растворенном) состоянии переносится настолько малое количество этих газов, что им смело можно пренебречь при оценке потребностей организма. Для простоты в дальнейшем будем считать, что основное количество кислорода и углекислого газа транспортируется в связанном состоянии.

Транспорт кислорода

Кислород транспортируется в виде оксигемоглобина. Оксигемоглобин - это комплекс гемоглобина и молекулярного кислорода.

Гемоглобин содержится в красных кровяных тельцах - эритроцитах . Эритроциты под микроскопом похожи на слегка приплюснутый бублик, дырку в котором забыли проткнуть до конца. Такая необычная форма позволяет эритроцитам взаимодействовать с окружающей кровью большей площадью, чем шарообразным клеткам (помните - из тел, имеющих равный объем, шар имеет минимальную площадь). А кроме того, эритроцит способен сворачиваться в трубочку, протискиваясь в узкий капилляр и добираясь в самые отдаленные уголки организма.

В 100 мл крови при температуре тела растворяется лишь 0,3 мл кислорода. Кислород, растворяющийся в плазме крови капилляров малого круга кровообращения, диффундирует в эритроциты, сразу же связывается гемоглобином, образуя оксигемоглобин, в котором кислорода 190 мл/л. Скорость связывания кислорода велика - время поглощения диффундировавшего кислорода измеряется тысячными долями секунды. В капиллярах альвеол с соответствующими вентиляцией и кровоснабжением практически весь гемоглобин притекающей крови превращается в оксигемоглобин. А вот сама скорость диффузии газов «туда и обратно» значительно медленнее скорости связывания газов. Отсюда следует второй практический вывод : чтобы газообмен шел успешно, воздух должен «получать паузы», за время которых успевает выровняться концентрация газов в альвеолярном воздухе и притекающей крови, то есть обязательно должна присутствовать пауза между вдохом и выдохом .

Запомните это!
Превращение восстановленного (бескислородного) гемоглобина (дезоксигемоглобина) в окисленный (содержащий кислород) гемоглобин (оксигемоглобин) зависит от содержания растворенного кислорода в жидкой части плазмы крови. Причем механизмы усвоения растворенного кислорода весьма эффективны.

Например, подъем на высоту 2 км над уровнем моря сопровождается снижением атмосферного давления с 760 до 600 мм рт. ст., парциального давления кислорода в альвеолярном воздухе со 105 до 70 мм рт. ст., а содержание оксигемоглобина снижается лишь на 3%. И, несмотря на снижение атмосферного давления, ткани продолжают успешно снабжаться кислородом.

В тканях, требующих для нормальной жизнедеятельности много кислорода (работающие мышцы, печень, почки, железистые ткани), оксигемоглобин «отдает» кислород очень активно, иногда почти полностью. В тканях, в которых интенсивность окислительных процессов мала(например, в жировой ткани), большая часть оксигемоглобина не «отдает» молекулярный кислород - уровень диссоциации оксигемоглобина низкий. Переход тканей из состояния покоя в деятельное состояние (сокращение мышц, секреция желез) автоматически создает условия для увеличения диссоциации оксигемоглобина и увеличения снабжения тканей кислородом.

Способность гемоглобина «удерживать» кислород (сродство гемоглобина к кислороду ) снижается при увеличении концентрации углекислого газа и ионов водорода. Подобным же образом действует на диссоциацию оксигемоглобина повышение температуры.

Отсюда становится легко понятным, как взаимосвязаны и сбалансированы относительно друг друга природные процессы. Изменения способности оксигемоглобина удерживать кислород имеет громадное значение для обеспечения снабжения им тканей. В тканях, в которых процессы обмена веществ протекают интенсивно, концентрация углекислого газа и ионов водорода увеличивается, а температура повышается. Это ускоряет и облегчает «отдачу» гемоглобином кислорода и облегчает течение обменных процессов.

В волокнах скелетных мышц содержится близкий к гемоглобину миоглобин. Он обладает очень высоким сродством к кислороду. «Ухватившись» за молекулу кислорода, он уже не отдаст ее в кровь.

Количество кислорода в крови

Максимальное количество кислорода, которое может связать кровь при полном насыщении гемоглобина кислородом, называется кислородной емкостью крови . Кислородная емкость крови зависит от содержания в ней гемоглобина.

В артериальной крови содержание кислорода лишь немного (на 3-4%) ниже кислородной емкости крови. В обычных условиях в 1 л артериальной крови содержится 180-200 мл кислорода. Даже в тех случаях, когда в экспериментальных условиях человек дышит чистым кислородом, его количество в артериальной крови практически соответствует кислородной емкости. По сравнению с дыханием атмосферным воздухом количество переносимого кислорода увеличивается мало (на 3-4%).

Венозная кровь в состоянии покоя содержит около 120 мл/л кислорода. Таким образом, протекая по тканевым капиллярам, кровь отдает не весь кислород.

Часть кислорода, поглощаемая тканями из артериальной крови, называется коэффициентом утилизации кислорода . Для его вычисления делят разность содержания кислорода в артериальной и венозной крови на содержание кислорода в артериальной крови и умножают на 100.

Например:
(200- 120): 200 х 100 = 40%.

В покое коэффициент утилизации кислорода организмом колеблется от 30 до 40%. При интенсивной мышечной работе он повышается до 50-60%.

О читайте в следующей статье.

Материал подготовил: Atamovich

Для начала восстановим в памяти несколько положений и понятий из области физики, без них изучение газообмена и транспорта газа в легких, невозможно. Итак, атмосферный воздух имеет довольно постоянный процентный состав газов. Это завидное постоянство характерно и для альвеолярного воздуха, то есть для того, который не просто заполняет легкие, а контактирует непосредственно с пневмоцитами, выстилающими альвеолы. Правда, О2 в альвеолярном воздухе меньше, чем его содержание в атмосферном (14 и 21%, соответственно), а СО2 значительно больше (5,5 против 0,03% в атмосферном), но значения эти (14 и 5,5%) постоянные (разница между альвеолярным и атмосферным воздухом - результат постоянно происходящего газообмена, находящегося вне зависимости от времени суток, а также от того вдох сейчас или выход, хочет того человек или нет).


А теперь вводим первое физическое понятие - парциальное давление газа . В воздухе, представленном в виде газовой смеси оно пропорционально процентному содержанию этого газа в общем давлении смеси. Атмосферное давление, как известно, равняется 760 мм рт.ст. Давление же газовой смеси в альвеолярном воздухе несколько меньше, так как часть его пришлась на возрастающее в дыхательной системе количество водяных паров, и составляет 713 мм рт.ст. Теперь не составит труда простыми пропорциями рассчитать парциальное давление в альвеолярном воздухе кислорода и углекислого газа. Если давление газовой смеси 713 мм рт.ст., а кислорода содержится 14%, значит парциальное давление О2 равно 100 мм рт.ст. Так же находим это значение и для углекислоты - оно будет равно 40 мм рт.ст. Стоит запомнить, что парциальное давление обоих газов в альвеолярном воздухе являет собой ту силу, с которой молекулы этих газов пытаются проникнуть через аэрогематинеский барьер в кровь из альвеол легких.


Что же мешает такому переходу? Оказывается, в плазме крови этих газов и без того достаточно. Они находятся там в растворенном виде, и, мало того, сами не прочь выйти из раствора в альвеолярный воздух. Здесь влияние оказывает напряжение газа , находящегося в жидкости. Напряжение газа - это величина, характеризующая силу стремления молекул растворенного газа выйти из водной среды в газовую. В физическом отношении понятия «парциальное давление» и «напряжение» очень близки, только относятся к разным средам: первое - к газовой смеси, а второе - к жидкости. Но самое главное в том, что они противостоят друг другу. Если бы парциальное давление, скажем, СО2 было равно напряжению СО2 в крови, то передвижение двуокиси углерода не наблюдалось бы ни в том, ни в другом направлении.


И все же газообмен происходит. И происходит он благодаря разнице характеристик парциального давления газов, находящихся в альвеолярном воздухе с напряжением тех же самых газов, находящихся в плазме крови. Взгляните на рисунок справа. Начнем с кислорода. К легким по системе легочной артерии притекает кровь, бедная О2, напряжение которого в ней равно 40 мм рт.ст. Кровь бежит по капиллярам, расположенным в межальвеолярных стенках, то есть через аэрогематический барьер соседствует с воздухом альвеол, в котором парциальное давление О2 равно 100 мм рт.ст. То есть мы наблюдаем разницу 40 и 100! Конечно, О2 устремляется в кровь и он будет растворятся в крови до тех самых пор, пока напряжение этого газа не увеличится хотя бы до 96 мм рт.ст. Когда артериальная кровь насыщается кислородом, то собирается в легочных венах, чтобы через них покинуть легкие.


Другая ситуация складывается с CO2. Кровь, поступает к легким от всего организма через сосуды малого круга, она содержит много СО2 (46 мм рт.ст.), однако парциальное давление СО2 в альвеолах только 40 мм. Это и определяет движение двуокиси углерода из плазмы через барьер для последующего высвобождения в альвеолярный воздух, что приводит к снижению напряжения СО2 до 39 мм рт.ст.


За транспорт кислорода от легких к тканям в основном отвечают эритроциты. Когда в легочных капиллярах начинает нарастать напряжение кислорода, гемоглобин эритроцитов начинает выхватывать из плазмы молекулы О2, постепенно превращаясь в оксигемоглобин. Именно в такой форме кислород приносится к органам и тканям. Оксигемоглобин «отсоединяет» от себя О2, отдавая его снова в плазму, и начинается как бы вторая серия - газообмен осуществляется уже между кровью и тканями.


Всем клеткам организма нужен кислород, т.к. именно этот газ является универсальным окислителем в процессах. Используя кислород в биохимических реакциях, клетки получают необходимую им энергию и углекислый газ, требующий удаления за пределы клетки. Так как не все клетки оказываются в непосредственном контакте с капиллярами, то надежным посредником между ними является тканевая жидкость, о которой подробнее будет рассказано в параграфах о внутренней среде организма и о лимфе. Из тканевой жидкости клетка забирает кислород, поступающий из капилляра, в нее же «выбрасывает» двуокись углерода. Другими словами, тканевой газообмен осуществляется главным образом между плазмой крови и жидкостью тканей организма. А там уже все проходит по известному механизму. Еще раз обратитесь к таблице на рис. 66. Напряжение О2 в тканевой жидкости невелико (40 мм рт.ст.), чего не скажешь о крови артерий (96 мм рт.ст.). Исходя из этого столь необходимый клеткам кислород перемещается из плазмы в тканевую жидкость до тех пор, пока напряжение этого газа в крови не достигнет 40 мм рт.ст. СО2 же газ из места большего своего напряжения (46 мм рт.ст. в жидкости тканей) устремляется в плазму крови, где его напряжение составляет 39 мм рт.ст., доводя его до отметки 46. Кровь с такими показателями О2 и СО2 (40 мм и 46 мм рт.ст.) будет венозной и по венам большого круга притекает к правым отделам сердца, откуда отправляется для осуществления газообмена в легкие человека.


Транспорт углекислого газа в организме человека способен осушествлятся кровью 3-мя путями. Незначительная часть газа растворяется в плазме, определяя тем самым напряжение СО2 в крови. Большая часть СО2 тем временем контактирует с гемоглобином красных кровяных телец, соединяется с ним, превращая в карбоксигемоглобин. Ну а весь оставшийся СО2 транспортируется в качестве кислых солей угольной кислоты (чаще всего NaHCO3). Тем ни менее, какой бы способ транспортировки углекислоты не использовался, он приводит газ к легких, для последующего его выведения из человеческого организма.


Итак, если постараться кратко резюмировать, то можно сказать, что существует 2 стадии газообмена : легочная и тканевая. В легочной стадии основой считается разница парциального давления газа в альвеолярном воздухе с напряжением газа в крови. Для тканевой стадии основой будет разница напряжения газа в крови и жидкости тканей. Сам транспорт газов обязательно происходит, если газы находятся в растворенном виде, либо в связанном, если молекулы газов соединяются с ионами или молекулой гемоглобина.




© 2024 Идеи дизайна квартир и домов