Вконтакте Facebook Twitter Лента RSS

Современные проблемы науки и образования. Особенности определения теплопроводности строительных материалов Оборудование и материалы

До настоящего времени не выработано единой классификации, что связано с многообразием существующих методов. Всем известные экспериментальные методы измерения коэффициента теплопроводности материалов разделяются на две большие группы: стационарные и нестационарные. В первом случае качество расчетной формулы используются частные решения уравнения теплопроводности

при условии, во втором - при условии, где T - температура; ф - время; - коэффициент температуропроводности; л - коэффициент теплопроводности; С - удельная теплоемкость; г - плотность материала; - оператор Лапласа, записанный в соответствующей системе координат; - удельная мощность объемного источника тепла.

Первая группа методов основана на использовании стационарного теплового режима; вторая - нестационарного теплового режима. Стационарные методы определения коэффициента теплопроводности по характеру измерений являются прямыми (т.е. непосредственно определяется коэффициент теплопроводности) и делятся на абсолютные и относительные. В абсолютных методах измеряемые в эксперименте параметры позволяют с помощью расчетной формулы получить искомую величину коэффициента теплопроводности. В относительных методах измеряемые в эксперименте параметры позволяют с помощью расчетной формулы получить искомую величину коэффициента теплопроводности. В относительных методах измеряемых параметров для расчета абсолютной величины оказывается недостаточно. Здесь возможны два случая. Первый - наблюдение за изменением коэффициента теплопроводности по отношению к исходному, принятому за единицу. Второй случай - применение эталонного материала с известными тепловыми свойствами. При этом в расчетной формуле используется коэффициент теплопроводности эталона. Относительные методы имеют некоторое преимущество перед абсолютными методами, так как более просты. Дальнейшее деление стационарных методов можно провести по характеру нагрева (внешний, объемный и комбинированный) и по виду изотерм поля температуры в образцах (плоские, цилиндрические, сферические). Подгруппа методов с внешним нагревом включает все методы, в которых используются наружные (электрические, объемные и др.) нагреватели и нагрев поверхностей образца тепловым излучением или электронной бомбардировкой. Подгруппа методов с объемным нагревом объединяет все методы, где используется нагрев током, пропускаемым через образец, нагрев исследуемого образца от нейтронного или г-излучения или токами сверхвысокой частоты. К подгруппе методов с комбинированным нагревом могут быть отнесены методы, в которых одновременно используется внешний и объемный нагрев образцов, или промежуточный нагрев (например, токами высокой частоты).

Во всех трех подгруппах стационарных методов поле температуры

может быть различным.

Плоские изотермы образуются в случае, когда тепловой поток направлен вдоль оси симметрии образца. Методы с использованием плоских изотерм в литературе называются методами с осевым или продольным потоком тепла, а сами экспериментальные установки - плоскими приборами.

Цилиндрические изотермы соответствуют распространению теплового потока по направлению радиуса цилиндрического образца. В случае, когда тепловой поток направлен по радиусу сферического образца, возникают сферические изотермы. Методы, использующие такие изотермы, называются сферическими, а приборы - шаровыми.

Какими бы ни были масштабы строительства, первым делом разрабатывается проект. В чертежах отражается не только геометрия строения, но и расчет главных теплотехнических характеристик. Для этого надо знать теплопроводность строительных материалов. Главная цель строительства заключается в сооружении долговечных сооружений, прочных конструкций, в которых комфортно без избыточных затрат на отопление. В связи с этим крайне важно знание коэффициентов теплопроводности материалов.

У кирпича лучшая теплопроводность

Характеристика показателя

Под термином теплопроводность понимается передача тепловой энергии от более нагретых предметов к менее нагретым. Обмен идет, пока не наступит температурного равновесия.

Теплопередача определяется отрезком времени, в течение которого температура в помещениях находится в соответствии с температурой окружающей среды. Чем меньше этот интервал, тем больше проводимость тепла стройматериала.

Для характеристики проводимости тепла используется понятие коэффициента теплопроводности, показывающего, сколько тепла за такое-то время проходит через такую-то площадь поверхности. Чем этот показатель выше, тем больше теплообмен, и постройка остывает гораздо быстрее. Таким образом, при возведении сооружений рекомендуется использовать стройматериалы с минимальной проводимостью тепла.

В этом видео вы узнаете о теплопроводности строительных материалов:

Как определить теплопотери

Главные элементы здания, через которые уходит тепло:

  • двери (5-20%);
  • пол (10-20%);
  • крыша (15-25%);
  • стены (15-35%);
  • окна (5-15%).

Уровень теплопотери определяется с помощью тепловизора. О самых трудных участках говорит красный цвет, о меньших потерях тепла скажет желтый и зеленый. Зоны, где потери наименьшие, выделяются синим. Значение теплопроводности определяется в лабораторных условиях, и материалу выдается сертификат качества.

Значение проводимости тепла зависит от таких параметров:

  1. Пористость. Поры говорят о неоднородности структуры. Когда через них проходит тепло, охлаждение будет минимальным.
  2. Влажность. Высокий уровень влажности провоцирует вытеснение сухого воздуха капельками жидкости из пор, из-за чего значение увеличивается многократно.
  3. Плотность. Большая плотность способствует более активному взаимодействию частиц. В итоге теплообмен и уравновешивание температур протекает быстрее.

Коэффициент теплопроводности

В доме теплопотери неизбежны, а происходят они, когда за окном температура ниже, чем в помещениях. Интенсивность является переменной величиной и зависит от многих факторов, основные из которых следующие:

  1. Площадь поверхностей, участвующих в теплообмене.
  2. Показатель теплопроводности стройматериалов и элементов здания.
  3. Разница температур.

Для обозначения коэффициента теплопроводности стройматериалов используют греческую букву λ. Единица измерения – Вт/(м×°C). Расчет производится на 1 м² стены метровой толщины. Здесь принимается разница температур в 1°C.

Пример из практики

Условно материалы делятся на теплоизоляционные и конструкционные. Последние имеют наивысшую теплопроводность, из них строят стены, перекрытия, другие ограждения. По таблице материалов, при постройке стен из железобетона для обеспечения малого теплообмена с окружающей средой толщина их должна составлять примерно 6 м. Но тогда строение будет громоздким и дорогостоящим .

В случае неправильного расчета теплопроводности при проектировании жильцы будущего дома будут довольствоваться лишь 10% тепла от энергоносителей. Потому дома из стандартных стройматериалов рекомендуется утеплять дополнительно.

При выполнении правильной гидроизоляции утеплителя большая влажность не влияет на качество теплоизоляции, и сопротивление строения теплообмену станет гораздо более высоким.


Наиболее оптимальный вариант – использовать утеплитель

Наиболее распространенный вариант – сочетание несущей конструкции из высокопрочных материалов с дополнительной теплоизоляцией. Например:

  1. Каркасный дом. Утеплитель укладывается между стойками. Иногда при небольшом снижении теплообмена требуется дополнительное утепление снаружи главного каркаса.
  2. Сооружение из стандартных материалов. Когда стены кирпичные или шлакоблочные, утепление производится снаружи.

Стройматериалы для наружных стен

Стены сегодня возводятся из разных материалов, однако популярнейшими остаются: дерево, кирпич и строительные блоки. Главным образом отличаются плотность и проводимость тепла стройматериалов. Сравнительный анализ позволяет найти золотую середину в соотношении между этими параметрами. Чем плотность больше, тем больше несущая способность материала, а значит, всего сооружения. Но тепловое сопротивление становится меньше, то есть повышаются расходы на энергоносители. Обычно при меньшей плотности есть пористость.

Коэффициент теплопроводности и его плотность.

Утеплители для стен

Утеплители используются, когда не хватает тепловой сопротивляемости наружных стен. Обычно для создания комфортного микроклимата в помещениях достаточно толщины 5-10 см.

Значение коэффициента λ приводится в следующей таблице.

Теплопроводность измеряет способность материала пропускать тепло через себя. Она сильно зависит от состава и структуры. Плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, являются плохими проводниками.

УДК 536.2.083; 536.2.081.7; 536.212.2; 536.24.021 А. В. Лузина, А. В. Рудин

ИЗМЕРЕНИЕ ТЕПЛОПРОВОДНОСТИ МЕТАЛЛИЧЕСКИХ ОБРАЗЦОВ МЕТОДОМ СТАЦИОНАРНОГО ПОТОКА ТЕПЛА

Аннотация. Описывается методика и конструктивные особенности установки для измерения коэффициента теплопроводности металлических образцов, выполненных в форме однородного цилиндрического стержня или тонкой прямоугольной пластины методом стационарного потока тепла. Нагрев исследуемого образца осуществляется посредством прямого электрического нагрева коротким импульсом переменного тока, закрепленным в массивных медных токовых зажимах, которые одновременно выполняют функцию теплоотвода.

Ключевые слова: коэффициент теплопроводности, образец, закон Фурье, стационарный теплообмен, измерительная установка, трансформатор, мультимер, термопара.

Введение

Перенос тепловой энергии от более нагретых участков твердого тела к менее нагретым посредством хаотически движущихся частиц (электронов, молекул, атомов и т.п.) называется явлением теплопроводности. Исследование явления теплопроводности широко используется в различных отраслях промышленности, таких как: нефтяная, авиационно-космическая, автомобильная, металлургическая, горнорудная и т.д.

Различают три основных вида теплообмена: конвекция, тепловое излучение и теплопроводность. Теплопроводность зависит от природы вещества и его физического состояния. При этом в жидкостях и твердых телах (диэлектриках) перенос энергии осуществляется путем упругих волн, в газах - посредством соударения и диффузии атомов (молекул), а в металлах - путем диффузии свободных электронов и с помощью тепловых колебаний решетки. Передача тепла в теле зависит от того, в каком состоянии оно находится: газообразном, жидком или твердом .

Механизм теплопроводности в жидкостях отличен от механизма теплопроводности в газах и имеет много общего с теплопроводностью твердых тел. В областях с повышенной температурой имеются колебания молекул с большой амплитудой. Эти колебания передаются смежным молекулам, и таким образом энергия теплового движения передается постепенно от слоя к слою. Этот механизм обеспечивает сравнительно малую величину коэффициента теплопроводности. С повышением температуры для большинства жидкостей коэффициент теплопроводности уменьшается (исключение составляют вода и глицерин, для них коэффициент теплопроводности увеличивается с повышением температуры) .

Явление переноса кинетической энергии при помощи молекулярного движения в идеальных газах обусловлено передачей тепла посредством теплопроводности. За счет хаотичности молекулярного движения молекулы перемещаются во всех направлениях. Перемещаясь из мест с более высокой температурой к местам с более низкой температурой, молекулы благодаря парным соударениям передают кинетическую энергию движения. В результате молекулярного движения происходит постепенное выравнивание температуры; в неравномерно нагретом газе передача тепла есть перенос определенного количества кинетической энергии при беспорядочном (хаотическом) движении молекул. С уменьшением температуры коэффициент теплопроводности газов понижается.

В металлах основным передатчиком тепла являются свободные электроны, которые можно уподобить идеальному одноатомному газу. Поэтому с некоторым приближением

Коэффициент теплопроводности строительных и теплоизоляционных материалов с повышением температуры увеличивается, с увеличением объемного веса он возрастает. Коэффициент теплопроводности сильно зависит от пористости и влажности материала. Теплопроводность различных материалов изменяется в диапазоне: 2-450 Вт/(м К) .

1. Уравнение теплопроводности

Закон теплопроводности основан на гипотезе Фурье о пропорциональности теплового потока разности температур на единице длины пути переноса тепла в единицу времени . Численно коэффициент теплопроводности равен количеству тепла, протекающего в единицу времени через единицу поверхности, при перепаде температуры на единице длины нормали, равном одному градусу.

Согласно закону Фурье, поверхностная плотность теплового потока ч пропорцио-

нальна градиенту температуры -:

Здесь множитель X называется коэффициентом теплопроводности. Знак минус указывает на то, что теплота передается в направлении уменьшения температуры. Количество теплоты, прошедшее в единицу времени через единицу изотермической поверхности, называется плотностью теплового потока:

Количество теплоты, проходящее в единицу времени через изотермическую поверхность Б, называется тепловым потоком:

О = | чйБ = -1 -кдП^Б. (1.3)

Полное количество теплоты, прошедшее через эту поверхность Б за время т, определится из уравнения

От=-ДЛ-^т. (1.4)

2. Граничные условия теплопроводности

Существуют различные условия однозначности: геометрические - характеризующие форму и размеры тела, в котором протекает процесс теплопроводности; физические - характеризующие физические свойства тела; временные - характеризующие распределение температуры тела в начальный момент времени; граничные - характеризующие взаимодействие тела с окружающей средой .

Граничные условия I рода. В этом случае задается распределение температуры на поверхности тела для каждого момента времени.

Граничные условия II рода. В этом случае заданной является величина плотности теплового потока для каждой точки поверхности тела в любой момент времени:

Яра = Я (Х, У, 2,1).

Граничные условия III рода. В этом случае задается температура среды T0 и условия теплообмена этой среды с поверхностью тела.

Граничные условия IV рода формируются на основании равенства тепловых потоков, проходящих через поверхность соприкосновения тел.

3. Экспериментальная установка для измерения коэффициента теплопроводности

Современные методы определения коэффициентов теплопроводности можно разделить на две группы: методы стационарного потока тепла и методы нестационарного потока тепла.

В первой группе методов тепловой поток, проходящий через тело или систему тел, остается постоянным по величине и направлению. Температурное поле является стационарным.

В методах нестационарного режима используется переменное во времени температурное поле.

В настоящей работе использован один из методов стационарного потока тепла -метод Кольрауша .

Блок-схема установки для измерения теплопроводности металлических образцов показана на рис. 1.

Рис. 1. Блок-схема измерительной установки

Основным элементом установки является силовой понижающий трансформатор 7, первичная обмотка которого подключена к автотрансформатору типа ЛАТР 10, а вторичная обмотка, изготовленная из медной шины прямоугольного сечения, имеющая шесть витков, непосредственно подключена к массивным медным токовым зажимам 2, которые одновременно выполняют функцию теплоотвода-холодильника. Исследуемый образец 1 закрепляется в массивных медных токовых зажимах 2 с помощью массивных медных болтов (на рисунке не показаны), которые одновременно выполняют функцию теплоотвода. Контроль температуры в различных точках исследуемого образца осуществляется с помощью хромель-копелевых термопар 3 и 5, рабочие концы которых непосредственно закрепляются на цилиндрической поверхности образца 1 - одна в центральной части образца, а другая на конце образца. Свободные концы термопар 3 и 5 подключаются к мультимерам типа ДТ-838 4 и 6, которые позволяют проводить измерения температуры с точностью до 0,5 °С. Нагрев образца осуществляется посредством прямого электрического нагрева коротким импульсом переменного тока с вторичной обмотки силового трансформатора 7. Измерение силы тока в исследуемом образце осуществляется косвенным способом - методом измерения напряжения на вторичной обмотке кольцевого трансформатора тока 8, первичной обмоткой которого является силовая шина вторичной обмотки силового трансформатора 7, пропущенная через свободный зазор кольцевого магнитного сердечника. Измерение напряжения вторичной обмотки трансформатора тока осуществляется мультимером 9.

Изменение величины импульсного тока в исследуемом образце осуществляется с помощью линейного автотрансформатора 10 (ЛАТР), первичная обмотка которого через последовательно включенные сетевой предохранитель 13 и кнопку 12 подключена к сети переменного тока напряжением 220 В. Падение напряжения на исследуемом образце в режиме прямого электрического нагрева осуществляется с помощью мультимера 14, параллельно подключенного непосредственно к токовым зажимам 2. Измерение длительности импульсов тока осуществляется с помощью электрического секундомера 11, подключенного к первичной обмотке линейного автотрансформатора 10. Включение и выключение режима нагрева исследуемого образца обеспечивается кнопкой 12.

При проведении измерений коэффициента теплопроводности на вышеописанной установке необходимо выполнение следующих условий:

Однородность сечения исследуемого образца по всей длине;

Диаметр исследуемого образца должен находиться в интервале от 0,5 мм до 3 мм (в противном случае основная тепловая мощность будет выделятся в силовом трансформаторе, а не в исследуемом образце).

Диаграмма зависимости температуры от длины образца приведена на рис. 2.

Рис. 2. Зависимость температуры от длины образца

Как видно на приведенной диаграмме, зависимость температуры от длины исследуемого образца носит линейный характер с явно выраженным максимумом в центральной части образца, а на концах остается минимальной (постоянной) и равной температуре окружающей среды в течение интервала времени установления равновесного режима теплопередачи, которое для данной экспериментальной установки не превышает 3 минут, т.е. 180 секунд.

4. Вывод рабочей формулы для коэффициента теплопроводности

Количество теплоты, выделяемое в проводнике при прохождении электрического тока, можно определить по закону Джоуля - Ленца:

Qэл = 12-Я^ = и I I, (4.1)

где и, I - напряжение и сила тока в исследуемом образце; Я - сопротивление образца.

Количество теплоты, переносимое через поперечное сечение исследуемого образца за интервал времени t, выполненного в виде однородного цилиндрического стержня длиной £ и сечением 5, можно рассчитать по закону Фурье (1.4):

Qs = Я-йТ- 5- t, (4.2)

где 5 = 2-5осн, 5осн =^4-, ат = 2-ДТ = 2-(Гтах -Гтк1); й£ = Д£ = 1-£.

Здесь коэффициенты 2 и 1/2 указывают на то, что тепловой поток направлен от

центра образца к его концам, т.е. раздваивается на два потока. Тогда

^^б = 8-Я-(Гтах -Тт|п) -Б^ . (4.3)

5. Учет тепловых потерь на боковую поверхность

§Ожр = 2- Ббок -ДТха, (5.1)

где Ббок = п-й-1; а - коэффициент теплообмена поверхности исследуемого образца с окружающей средой, имеющий размерность

Разность температур

ДГх = Тх - Т0кр, (5.2)

где Тх - температура в данной точке поверхности образца; Гокр - температура окружающей среды, можно рассчитать из линейного уравнения зависимости температуры образца от его длины:

Тх = Т0 + к-х, (5.3)

где угловой коэффициент к можно определить через тангенс угла наклона линейной зависимости температуры образца от его длины:

ДТ Т - Т Т - Т

к = ф = МТ* = Ттах Ттт = 2 "тах Vр. (5.4)

Подставляя выражения (5.2), (5.3) и (5.4) в уравнение (5.1), получим:

SQaup = 2a-nd■ dx■(+ kx-Т0Кр) dt,

где Т0 Тсжр.

8Q0Kp = 2a.nd ■ kx ■ dx ■ dt. (5.5)

После интегрирования выражения (5.5) получим:

Q0Kp = 2nd■ dk j jdt■ x■ dx = 2nd-a-k■-I - | ■ t = -4a^nd■ k■ I2 ■ t. (5.6)

Подставляя полученные выражения (4.1), (4.3) и (5.6) в уравнение теплового баланса аолн = ожр + qs , где Qполн = QЭЛ, получим:

UIt = 8 ■Х ■ S^ ^^-o ■t + -a^n ■d ■ -(Tmax - To) ■t.

Решая полученное уравнение относительно коэффициента теплопроводности, получим:

и1 а £2 , л

Полученное выражение позволяет определять коэффициент теплопроводности тонких металлических стержней в соответствии с проведенными расчетами для типичных исследуемых образцов с относительной погрешностью

AU f (AI f (Л(ЛГ) ^ (At2

не превышающей 1,5 %.

Список литературы

1. Сивухин, Д. В. Общий курс физики / Д. В. Сивухин. - М. : Наука, 1974. - Т. 2. - 551 с.

2. Рудин, А. В. Исследование процессов структурной релаксации в стеклообразующих объектах при различных режимах охлаждения / А. В. Рудин // Известия высших учебных заведений. Поволжский регион. Естественные науки. - 2003. - № 6. - С. 123-137.

3. Павлов, П. В. Физика твердого тела: учеб. пособие для студентов, обучающихся по специальностям «Физика» / П. В. Павлов, А. Ф. Хохлов. - М. : Высш. шк., 1985. - 384 с.

4. Берман, Р. Теплопроводность твердых тел / Р. Берман. - М., 1979. - 287 с.

5. Лившиц, Б. Г. Физические свойства металлов и сплавов / Б. Г. Лившиц, В. С. Крапошин. - М. : Металлургия, 1980. - 320 с.

Лузина Анна Вячеславовна Luzina Anna Vyacheslavovna

магистрант, master degree student,

Пензенский государственный университет Penza State University E-mail: [email protected]

Рудин Александр Васильевич

кандидат физико-математических наук, доцент, заместитель заведующего кафедрой физики, Пензенский государственный университет E-mail: [email protected]

Rudin Aleksandr Vasil"evich

candidate of physical and mathematical sciences, associate professor,

deputy head of sub-department of physics, Penza State University

УДК 536.2.083; 536.2.081.7; 536.212.2; 536.24.021 Лузина, А. В.

Измерение теплопроводности металлических образцов методом стационарного потока тепла /

А. В. Лузина, А. В. Рудин // Вестник Пензенского государственного университета. - 2016. - № 3 (15). -С. 76-82.

Способность материалов и веществ проводить тепло называется теплопроводностью (X,) и выражается коли­чеством тепла, проходящим через стенку площадью 1 м2, Толщиной 1 м за 1 ч при разности температур на противо­положных поверхностях стенки в 1 град. Единица изме­рения теплопроводности - Вт/(м-К) или Вт/(м-°С).

Теплопроводность материалов определяют

Где Q - количество тепла (энергии), Вт; F - площадь сечения материала (образца), перпендикулярная направ­лению теплового потока, м2; At- разность температур на противоположных поверхностях образца, К или °С; б- толщина образца, м.

Теплопроводность - один из главных показателей свойств теплоизоляционных материалов. Этот показатель зависит от целого ряда факторов: общей пористости ма­териала, размера и формы пор, вида твердой фазы, вида газа, заполняющего поры, температуры и т. п.

Зависимость теплопроводности от этих факторов в наиболее универсальном виде выражают уравнением Лееба:

_______ Ђs ______ - і

Где Кр--теплопроводность материала; Xs - теплопровод­ность твердой фазы материала; Рс - количество пор, на­ходящихся в сечении, перпендикулярном потоку тепла; Pi -количество пор, находящихся в сечении, параллель­ном потоку тепла; б - радиальная постоянная; є - излу­чаемость; v - геометрический фактор, влияющий на. из­лучение внутри пор; Tt - средняя абсолютная температу­ра; d - средний диаметр пор.

Знание теплопроводности того или иного теплоизоля­ционного материала позволяет правильно оценить его теплоизоляционные качества и рассчитать толщину теп­лоизоляционной конструкции из этого материала по за­данным условиям.

В настоящее время существует ряд методов определе­ния теплопроводности материалов, основанных на изме­рении стационарного и нестационарного потоков тепла.

Первая группа методов позволяет проводить измере­ния в широком диапазоне температур (от 20 до 700° С) и получать более точные результаты. Недостатком мето­дов измерения стационарного потока тепла является большая продолжительность опыта, измеряемая часами.

Вторая группа методов позволяет проводить экспери­мент в течение нескольких минут (до 1 ч), но зато при­годна для определения теплопроводности материалов лишь при сравнительно низких температурах.

Измерение теплопроводности строительных материа­лов этим методом производят, пользуясь прибором, изо­браженным на рис. 22. При этом с помощью малоинер­ционного тепломера производят измерение стационарного теплового потока, проходящего через испытуемый обра­зец материала.

Прибор состоит из плоского электронагревателя 7 и малоинерционного тепломера 9, установленного на рас­стоянии 2 мм от поверхности холодильника 10, через ко­торый непрерывно протекает вода с постоянной темпера­турой. На поверхностях нагревателя и тепломера зало­жены термопары 1,2,4 и 5. Прибор помещен в металли­ческий кожух 6, заполненный теплоизоляционным мате­риалом. Плотное прилегание образца 8 к тепломеру и на­гревателю обеспечивается прижимным приспособлением 3. Нагреватель, тепломер и холодильник имеют форму диска диаметром 250 мм.

Тепловой поток от нагревателя через образец и мало­инерционный тепломер передается холодильнику. Вели­чина теплового потока, проходящего через центральную часть образца, измеряется тепломером, представляющим собой термобатарею на паранитовом диске, или тепло - мером с воспроизводящим элементом, в который вмонти­рован плоский электрический нагреватель.

Прибором можно измерять теплопроводность при тем­пературе на горячей поверхности образца от 25 до 700° С.

В комплект прибора входят: терморегулятор типа РО-1, потенциометр типа КП-59, лабораторный авто­трансформатор типа РНО-250-2, переключатель термо­пар МГП, термостат ТС-16, амперметр технический пе­ременного тока до 5 А и термос.

Образцы материала, подвергающиеся испытанию, должны иметь в плане форму круга диаметром 250 мм. Толщина образцов должна быть не более 50 и не менее 10 мм. Толщину образцов измеряют с точностью до 0,1 мм и определяют как среднее арифметическое из ре­зультатов четырех измерений. Поверхности образцов должны быть плоскими и параллельными.

При испытании волокнистых, сыпучих, мягких и полу­жестких теплоизоляционных материалов отобранные об­разцы помещают в обоймы диаметром 250 мм и высотой 30-40 мм, изготовленные из асбестового картона толщи­ной 3-4 мм.

Плотность отобранной пробы, находящейся под удель­ной нагрузкой, должны быть равномерна по всему объему и соответствовать средней плотности испытуемого мате­риала.

Образцы перед испытанием должны быть высушены до постоянной массы при температуре 105-110° С.

Подготовленный к испытаниям образец укладывают на тепломер и прижимают нагревателем. Затем устанав­ливают терморегулятор нагревателя прибора на задан­ную температуру и включают нагреватель в сеть. После установления стационарного режима, при котором в тече­ние 30 мин показания тепломера будут постоянными, от­мечают показания термопар по шкале потенциометра.

При применении малоинерционного тепломера с вос­производящим элементом переводят показания тепломе­ра на нуль-гальванометр и включают ток через реостат, и миллиамперметр на компенсацию, добиваясь при этом положения стрелки нуль-гальванометра на 0, после чего регистрируют показания по шкале прибора в мА.

При измерении количества тепла малоинерционным тепломером с воспроизводящим элементом расчет тепло­проводности материала производят по формуле

Где б - толщина образца, м; T - температура горячей поверхности образца, °С; - температура холодной по­верхности образца, °С; Q - количество тепла, проходя­щее через образец в направлении, перпендикулярном его поверхности, Вт/м2.

Где R - постоянное сопротивление нагревателя тепломе­ра, Ом; / - сила тока, A; F - площадь тепломера, м2.

При измерении количества тепла (Q) градуированным малоинерционным тепломером расчет производят по фор­муле Q = AE (Вт/м2), где Е - электродвижущая сила (ЭДС), мВ; А - постоянная прибора, указанная в гра- дуировочном свидетельстве на тепломер.

Температуру поверхностей образца измеряют с точ­ностью до 0,1 С (при условии стационарного состояния). Тепловой поток вычисляют с точностью до 1 Вт/м2, а теп­лопроводность- до 0,001 Вт/(м-°С).

При работе на данном приборе необходимо произво­дить его периодическую проверку путем испытания стан­дартных образцов, которые предоставляют научно-ис­следовательские институты метрологии и лаборатории Комитета стандартов, мер и измерительных приборов при Совете Министров СССР.

После проведения опыта и получения данных состав­ляют свидетельство об испытании материала, в котором должны содержаться следующие данные: наименование и адрес лаборатории, проводившей испытания; дата про­ведения испытания; наименование и характеристика ма­териала; средняя плотность материала в сухом состоя­нии; средняя температура образца во время испытания; теплопроводность материала при этой температуре.

Метод двух пластин позволяет получать более достоверные результаты, чем рассмотренные выше, так как испытанию подвергают сразу два образца-близнеца и, кроме того, тепловой поток, проходящий через образ­цы, имеет два направления: через один образец он идет снизу вверх, а через другой - сверху вниз. Это обстоя­тельство в значительной степени способствует усредне­нию результатов испытания и приближает условия опы­та к реальным условиям службы материала.

Принципиальная схема двухпластинчатого прибора для определения теплопроводности материалов методом стационарного режима показана на рис. 23.

Прибор состоит из центрального нагревателя 1, охран­ного нагревателя 2, охладительных дисков 6, которые од-

Новременно прижимают образцы материала 4 к нагре­вателям, изоляционной засыпки 3, термопар 5 и кожуха 7.

В комплект прибора входит следующая регулиру­ющая и измерительная аппаратура. Стабилизатор на­пряжения (СН), автотрансформаторы (Т), ваттметр (W ), Амперметры (А), регулятор температуры охранного на­гревателя (Р), переключатель термопар (Я), гальвано­метр или потенциометр для измерения температуры (Г) И сосуд со льдом (С).

Для обеспечения одинаковых граничных условий у пе­риметра испытуемых образцов форма нагревателя при­нята дисковой. Диаметр основного (рабочего) нагревате­ля для удобства расчета принят равным 112,5 мм, что соответствует площади в 0,01 м2.

Испытание материала на теплопроводность произво­дят следующим образом.

Из отобранного для испытания материала изготовля­ют два образца-близнеца в виде дисков диаметром, рав­ным диаметру охранного кольца (250 мм). Толщина об­разцов должны быть одинаковой и находиться в пределах от 10 до 50 мм. Поверхности образцов должны быть плоскими и параллельными, без царапин и вмятин.

Испытание волокнистых и сыпучих материалов про­изводят в специальных обоймах из асбестового картона.

Перед испытанием образцы высушивают до постоян­ной массы и измеряют их толщину с точностью до 0,1 мм.

Образцы укладывают с двух сторон электронагрева­теля и прижимают их к нему охладительными дисками. Затем устанавливают регулятор напряжения (латр) в по­ложение, при котором обеспечивается заданная темпера­тура электронагревателя. Включают циркуляцию воды в охладительных дисках и после достижения установив­шегося режима, наблюдаемого по гальванометру, изме­ряют температуру у горячих и холодных поверхностей образцов, для чего пользуются соответствующими термо­парами и гальванометром или потенциометром. Одновре­менно измеряют расход электроэнергии. После этого вы­ключают электронагреватель, а через 2-3 ч прекращают подачу воды в охладительные диски.

Теплопроводность материала, Вт/(м-°С),

Где W - расход электроэнергии, Вт; б - толщина образ­ца, м; F - площадь одной поверхности электронагрева­теля, м2;. t - температура у горячей поверхности образ­ца, °С; І2 - температура у холодной поверхности образ­ца, °С.

Окончательные результаты по определению теплопро­водности относят к средней температуре образцов
где t - температура у горячей поверхности образца (средняя двух образцов), °С; t 2 - температура у холод­ной поверхности образцов (средняя двух образцов), °С.

Метод трубы. Для определения теплопроводности теплоизоляционных изделий с криволинейной поверх­ностью (скорлуп, цилиндров, сегментов) применяют ус­тановку, принципиальная схема которой показана на

Рис. 24. Эта установка представляет собой стальную тру­бу диаметром 100-150 мм и длиной не менее 2,5 м. Внут­ри трубы на огнеупорном материале смонтирован нагре­вательный элемент, который разделен на три самостоя­тельные секции по длине трубы: центральную (рабочую), занимающую примерно ]/з длины трубы, и боковые, слу­жащие для устранения утечки тепла через торцы прибора (трубы).

Трубу устанавливают на подвесках или на подставках на расстоянии 1,5-2 м от пола, стен и потолка помеще­ния.

Температуру трубы и поверхности испытуемого ма­териала измеряют термопарами. При проведении испыта­ния необходимо регулировать мощность электроэнергии, потребляемую охранными секциями, для исключения пе­репада температуры между рабочей и охранными секция­
ми. Испытания проводят при установившемся тепловом режиме, при котором температура на поверхностях тру­бы и изоляционного материала постоянна в течение 30 мин.

Расход электроэнергии рабочим нагревателем можно измерять как ваттметром, так и отдельно вольтметром и амперметром.

Теплопроводность материала, Вт/(м ■ °С),

X -_____ D

Где D - наружный диаметр испытуемого изделия, м; d - Внутренний диаметр испытуемого материала, м; - тем­пература на поверхности трубы, °С; t 2 - температура на внешней поверхности испытуемого изделия, °С; I - длина рабочей секции нагревателя, м.

Кроме теплопроводности на данном приборе можно замерять величину теплового потока в теплоизоляцион­ной конструкции, изготовленной из того или иного тепло­изоляционного материала. Тепловой поток (Вт/м2)

Определение теплопроводности, основанное на мето­дах нестационарного потока тепла (методы динамиче­ских измерений). Методы, основанные на измерении не­стационарных потоков тепла (методы динамических из­мерений), в последнее время все шире применяются ДЛЯ определения теплофизических величин. Преимуществом этих методов является не только сравнительная быстрота проведения опытов, но и больший объем информации, по­лучаемой за один опыт. Здесь к другим параметрам кон­тролируемого процесса добавляется еще один - время. Благодаря этому только динамические методы позволя­ют получать по результатам одного опыта теплофизиче - ские характеристики материалов такие, как теплопровод­ность, теплоемкость, температуропроводность, темп ох­лаждения (нагревания)

В настоящее время существует большое количество методов и приборов для измерения динамических темпе­ратур и тепловых потоков. Однако все они требуют зна­
Ния конкретных условий и введения поправок к получен­ным результатам, так как процессы измерения тепловых величин отличаются от измерения величин другой при­роды (механических, оптических, электрических, акусти­ческих и др.) своей значи­тельной инерционностью.

Поэтому методы, ос­нованные на измерении стационарных потоков тепла, отличаются от рас­сматриваемых методов значительно большей идентичностью между ре­зультатами измерений и истинными значениями измеряемых тепловых ве­личин.

Совершенств о в а н и е динамических методов измерений идет по трем направлениям. Во-пер­вых, это развитие мето­дов анализа погрешно­стей и введения поправок в результаты измерений. Во-вторых, разработка автоматических коррек­тирующих устройств для компенсации динамиче­ских погрешностей.

Рассмотрим два наи­более распространенных в СССР метода, основан­ных на измерении неста­ционарного потока тепла.

1. Метод регу­лярного теплового режима с бикало - риметром. При при­менении этого метода мо­гут быть использованы различные типы конструкции бикалориметров. рассмот­рим один из них - малогабаритный плоский бикалори - метр типа МПБ-64-1 (рис. 25), который предназначен
для определения теплопроводности полужестких, волок­нистых и сыпучих теплоизоляционных материалов при комнатной температуре.

Прибор МПБ-64-1 представляет собой цилиндрической формы разъемную оболочку (корпус) с внутренним диа­метром 105 мм, в центре которой встроен сердечник с вмонтированным в него нагревателем и батареей диффе­ренциальных термопар. Прибор изготовлен из дюралюми­ния марки Д16Т.

Термобатарея дифференциальных термопар бикало - риметра оснащена медно-копелевыми термопарами, диа­метр электродов которых равен 0,2 мм. Концы витков тер­мобатарей выведены на латунные лепестки кольца из стеклоткани, пропитанной клеем БФ-2, и далее через про­вода к вилке. Нагревательный элемент, выполненный из Нихромовой проволоки диаметром 0,1 мм, нашит на про­питанную клеем БФ-2 круглую пластинку из стекло ткани. Концы проволоки нагревательного элемента, так же как и концы проволоки термобатареи, выведены на латунные лепестки кольца и далее, через вилку, к источнику пита­ния. Нагревательный элемент может питаться от сети пе­ременного тока напряжением 127 В.

Прибор герметичен благодаря уплотнению из вакуум­ной резины, заложенной между корпусом и крышками, а также сальниковой набивке (пеньково-суриковой) между ручкой, бобышкой и корпусом.

Термопары, нагреватель и их выводы должны быть хорошо изолированы от корпуса.

Размеры испытуемых образцов не должны превышать в диаметре 104 мм и по толщине-16 мм. На приборе одновременно производят испытание двух образцов-близ­нецов.

Работа прибора основана на следующем принципе.

Процесс охлаждения твердого тела, нагретого до тем­пературы T ° и помещенного в среду с температурой ©<Ґ при весьма большой теплопередаче (а) от тела к Среде («->-00) и при постоянной температуре этой среды (0 = const), делится на три стадии.

1. Распределение температуры в теле носит сначала случайный характер, т. е. имеет место неупорядоченный тепловой режим.

2. С течением времени охлаждение становится упоря­доченным, т. е. наступает регулярный режим, при кото­
ром изменение температуры в каждой точке тела подчи­няется экспоненциальному закону:

Q - AUe.-"1

Где © - повышенная температура в какой-нибудь точке тела; U - некоторая функция координат точки; е-осно­вание натуральных логарифмов; т - время от начала охлаждения тела; т - темп охлаждения; А - постоянная прибора, зависящая от начальных условий.

3. После регулярного режима охлаждение характери­зуется наступлением теплового равновесия тела с окру­жающей средой.

Темп охлаждения т после дифференцирования выра­жения

По т в координатах In В -Т выражается следующим об­разом:

Где А и В - константы прибора; С - полная теплоем­кость испытуемого материала, равная произведению удельной теплоемкости материала на его массу, Дж/(кг-°С);т - темп охлаждения, 1/ч.

Испытание проводят следующим образом. После по­мещения образцов в прибор крышки прибора плотно при­жимают к корпусу с помощью гайки с накаткой. Прибор опускают в термостат с мешалкой, например в термо­стат ТС-16, заполненный водой комнатной температуры, затем подсоединяют термобатарею дифференциальных термопар к гальванометру. Прибор выдерживают в тер­мостате до выравнивания температур наружной и внут­ренней поверхностей образцов испытуемого материала, что фиксируется показанием гальванометра. После это­го включают нагреватель сердечника. Сердечник нагре­вают до температуры, превышающей на 30-40° темпера­туру воды в термостате, а затем выключают нагреватель. Когда стрелка гальванометра возвратится в пределы шкалы, производят запись убывающих во времени пока­заний гальванометра. Всего записывают 8-10 точек.

В системе координат 1п0-т строят график, который должен иметь вид прямой линии, пересекающей в некото­рых точках оси абсцисс и ординат. Затем рассчитывают тангенс угла наклона полученной прямой, который выра­жает величину темпа охлаждения материала:

__ In 6t - In O2 __ 6 02

ТІЬ - - j

T2 - Tj 12 - "El

Где Bi и 02 - соответствующие ординаты для времени Ті и Т2.

Опыт повторяют вновь и еще раз определяют темп охлаждения. Если расхождение в значениях темпа охлаж­дения, вычисленного при первом и втором опытах, менее 5%, то ограничиваются этими двумя опытами. Среднее значение темпа охлаждения определяют по результатам двух опытов и вычисляют величину теплопроводности ма­териала, Вт/(м*°С)

Х = (А + ЯСуР)/и.

Пример. Испытуемый материал - минераловатный мат на фенольном связующем со средней плотностью в сухом состоянии 80 кг/м3.

1. Вычисляем величину навески материала, помеща­емую в прибор,

Где Рп- навеска материала, помещаемая в одну цилин­дрическую емкость прибора, кг; Vn - объем одной ци­линдрической емкости прибора, равный 140 см3; рср - средняя плотность материала, г/см3.

2. Определяем произведение BCYP , где В - константа прибора, равная 0,324; С - удельная теплоемкость ма­териала, равная 0,8237 кДж/(кг-К). Тогда ВСУР= =0,324 0,8237 0,0224 = 0,00598.

3. Результаты наблюдений за охлаждением образцов в приборе во времени заносим в табл. 2.

Расхождения в значениях темпа охлаждения т и т2 менее 5%, поэтому повторные опыты можно не произво­дить.

4. Вычисляем средний темп охлаждения

Т=(2,41 + 2,104)/2=2,072.

Зная все необходимые величины, подсчитываем тепло­проводность

(0,0169+0,00598) 2,072=0,047 Вт/(м-К)

Или Вт/(м-°С).

При этом средняя температура образцов составляла 303 К или 30° С. В формуле 0,0169 -Л (константа при­бора) .

2. Зондовый метод. Существует несколько раз­новидностей зондового метода определения теплопровод­
ности теплоизоляционных материалов, отличающихся друг от друга применяющимися приборами и принципами нагрева зонда. Рассмотрим один из этих методов - метод цилиндрического зонда без электронагревателя.

Этот метод заключается в следующем. Металлический стержень диаметром 5-6 мм (рис. 26) и длиной около 100 мм вводят в толщу горячего теплоизоляционного ма­териала и с помощью вмонтированной внутри стержня

Термопары определяют температуру. Определение темпе­ратуры производят в два приема: в начале опыта (в мо­мент нагревания зонда) и в конце, когда наступает рав­новесное состояние и повышение температуры зонда пре­кращается. Время между этими двумя отсчетами заме­ряют с помощью секундомера. ч Теплопроводность материала, Вт/ (м °С), , R 2CV

Где R - радиус стержня, м; С - удельная теплоемкость материала, из которого изготовлен стержень, кДж/(кгХ ХК); V-объем стержня, м3; т - промежуток времени между отсчетами температуры, ч; tx и U - значения тем­ператур в момент первого и второго отсчетов, К или °С.

Этот способ очень прост и позволяет быстро опреде­лить теплопроводность материала как в лабораторных, так и в производственных условиях. Однако он пригоден лишь для грубой оценки этого показателя.

В соответствии с требованиями федерального закона № 261-ФЗ «Об энергосбережении» требования к теплопроводности строительных и теплоизоляционных материалов в России были ужесточены. Сегодня измерение теплопроводности является одним из обязательных пунктов при принятии решения об использовании материала в качестве теплоизолятора.

Для чего необходимо измерение теплопроводности в строительстве?

Контроль теплопроводности строительных и теплоизоляционных материалов проводится на всех стадиях их сертификации и производства в лабораторных условиях, когда материалы подвергают воздействию различных факторов, влияющих на его эксплуатационные свойства. Есть несколько распространённых методов измерения теплопроводности . Для точных лабораторных испытаний материалов низкой теплопроводности (ниже 0,04 – 0,05 Вт/м*К) рекомендуют использовать приборы, использующие метод стационарного теплового потока. Их применение регламентировано ГОСТ 7076.

Компания «Интерприбор» предлагает измеритель теплопроводности, цена которого выгодно отличается от имеющихся на рынке и отвечает всем современным требованиям. Он предназначен для лабораторного контроля качества строительных и теплоизоляционных материалов.

Преимущества измерителя теплопроводности ИТС-1

Измеритель теплопроводности ИТС-1 имеет оригинальное моноблочное исполнение и характеризуется следующими преимуществами:

  • автоматический цикл измерений;
  • высокоточный измерительный тракт, позволяющий стабилизировать температуры холодильника и нагревателя;
  • возможность градуировки прибора под отдельные виды исследуемых материалов, что дополнительно повышает точность результатов;
  • экспресс-оценка результата в процессе выполнения измерений;
  • оптимизированная «горячая» охранная зона;
  • информативный графический дисплей, упрощающий контроль и анализ результатов измерений.

ИТС-1 поставляется в единственной базовой модификации, которая по желанию клиента может быть дополнена контрольными образцами (оргстекло и пеноплекс), коробом для сыпучих материалов и защитным кофром для хранения и транспортировки прибора.



© 2024 Идеи дизайна квартир и домов